1. (This is based on problem 76 on page 90 .) The color of light can be represented in a vector, $\left[\begin{array}{l}R \\ G \\ B\end{array}\right]$,
blue light. The human eye and the brain transforms the incoming signal into the signal $\left[\begin{array}{l}I \\ L \\ S\end{array}\right]$, where the intensity $I=\frac{R+G+B}{3}$, the long-wave signal $L=R-G$ and the short wave signal $S=B-\frac{R+G}{2}$.
1.1. Find the matrix \mathcal{A} of the transformation taking $\left[\begin{array}{l}R \\ G \\ B\end{array}\right]$ to $\left[\begin{array}{l}I \\ L \\ S\end{array}\right]$.
$\mathcal{A}=\left[\begin{array}{ccc}\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 1 & -1 & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 1\end{array}\right]$.
1.2. Find \mathcal{A}^{-1}.

$$
\mathcal{A}^{-1}=\left[\begin{array}{ccc}
1 & \frac{1}{2} & -\frac{1}{3} \\
1 & -\frac{1}{2} & -\frac{1}{3} \\
1 & 0 & \frac{2}{3}
\end{array}\right]
$$

1.3. Consider a pair of yellow sunglasses for water sports which cuts out all blue light but passes all red and green light. Find a 3×3 matrix \mathcal{B} that represents the transformation incoming light undergoes as it passes through the sunglasses.
$\mathcal{B}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$.
1.4. Is \mathcal{B} invertible?

No. The rank of \mathcal{B} is 2 which is less than 3 .
1.5. Find the matrix for the composite transformation that light undergoes as it first passes through the sunglasses and then the eye.

This is $\mathcal{A B}=\left[\begin{array}{ccc}\frac{1}{3} & \frac{1}{3} & 0 \\ 1 & -1 & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 0\end{array}\right]$.
1.6. As you put on the sunglasses, the signal you receive (the I, L, and S) undergoes a transformation. Find the matrix \mathcal{M} of this transformation. (There is nice picture in the book if this is not clear enough.)

Lets think before begin (always a good thing). We want two compositions to be the same. In the first transformation the light goes though the sunglasses, represented by the matrix \mathcal{B}, and then though the eye represented. In the second transformation, light through the eye, represented by \mathcal{A}, and then through an unknown transformation represented by \mathcal{M}. So for all \vec{x}, we want
$\mathcal{A B} \vec{x}=\mathcal{M} \mathcal{A} \vec{x}$. Hence we want \mathcal{M} such that $\mathcal{A B}=\mathcal{M} \mathcal{A}$. Since \mathcal{A} is invertible we can multiple the right side by \mathcal{A}^{-1} and hence $\mathcal{M}=\mathcal{A B} \mathcal{A}^{-1}$. So we have the \mathcal{M} is $\left[\begin{array}{ccc}\frac{1}{2} & 0 & -\frac{2}{9} \\ 0 & 1 & 0 \\ -1 & 0 & \frac{1}{3}\end{array}\right]$.
2. Let B be a $m \times n$ matrix with $m \geq n$. Let A be a matrix such that $B A$ is invertible. (Hint: look at problems 31-35 from section 2.4)
2.1. What is the size of A ?
$B A$ must be square and hence must be $n \times n$. So A is $n \times m$.
2.2. Is $T(\vec{x})=B \vec{x}$ onto? Or equivalently, for all $\vec{b} \in \mathbb{R}^{m}$ there exists a vector $\vec{x} \in \mathbb{R}^{n}$ such that $B \vec{x}=\vec{b}$. Or equivalently, the linear system $B \vec{x}=\vec{b}$ is consistent for all vectors $\vec{b} \in \mathbb{R}^{m}$.

Yes, for each vector $\vec{b} \in \mathbb{R}^{m}$, take $\vec{x}=A \vec{b}$.
2.3. What is the rank of B ?

Since the linear system $B \vec{x}=\vec{b}$ is consistent for all vectors $\vec{b} \in \mathbb{R}^{m}$ the rank of B must be m.
2.4. What is the realtion between n and m ?
$n=m$ because $m=\operatorname{rank}(B) \leq n \leq m$.
2.5. Apply a lemma from the book (from class) to show that B and A are invertible.
A and B are square matrices. Since the rank of B is $m=n, \operatorname{rref}(B)=I_{n}$. Thus B is invertible. Now multiplying $B A=C$ by the inverse of B, we get $A=B^{-1} C$. Since B^{-1} and C are invertible A is invertible.
3.
3.1. Find the matrix of the linear transformation $T_{\vec{a}}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that projects each vector \vec{x} onto the line given by $\vec{a}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$

Call \mathcal{A} the matrix of the linear transformation $T_{\vec{a}}$. I first need to find the unit vector on the line given by \vec{a} : $\vec{u}=\left[\begin{array}{c}1 / \sqrt{2} \\ 0 \\ 1 / \sqrt{2}\end{array}\right]$. $\mathcal{A}=\left[\begin{array}{ccc}1 / 2 & 0 & 1 / 2 \\ 0 & 0 & 0 \\ 1 / 2 & 0 & 1 / 2\end{array}\right]$.
3.2. Find the matrix of the linear transformation $T_{\vec{b}}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that projects each vector \vec{x} onto the line given by $\vec{b}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$

Call \mathcal{B} the matrix of the linear transformation $T_{\vec{b}}$. I first need to find the unit vector on the line given by $\vec{b}: \vec{v}=\left[\begin{array}{c}1 / \sqrt{2} \\ -1 / \sqrt{2} \\ 0\end{array}\right] . \mathcal{B}=\left[\begin{array}{ccc}1 / 2 & -1 / 2 & 0 \\ -1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 0\end{array}\right]$.
3.3. Now use the above informations to find the matrix of the linear transformation $T: \mathbb{R}^{3} \rightarrow$ \mathbb{R}^{3} that projects each vector \vec{x} onto the plane \mathcal{P} given by \vec{a} and \vec{b}. (The plane \mathcal{P} is the set of all linear combinations of \vec{a} and \vec{b}.) (Hint: look at problem 40 from section 2.2)

Call \mathcal{C} the matrix of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that projects each vector \vec{x} onto the plane \mathcal{P} given by \vec{a} and \vec{b}. $T(\vec{x})=T_{a}(\vec{x})+T_{b}(\vec{x})=\mathcal{A} \vec{x}+\mathcal{B} \vec{x}$. So $\mathcal{C}=\mathcal{A}+\mathcal{B}=\left[\begin{array}{ccc}1 & -1 / 2 & 1 / 2 \\ -1 / 2 & 1 / 2 & 0 \\ 1 / 2 & 0 & 1 / 2\end{array}\right]$.

