Student's name:

Part 1. Multiple choice (5 points each)

1. Which of the following sets of 2×2 matrices is are subgroups of the group of all nonsingular 2×2 matrices over R:

$$A = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \square \mathbf{Z}, ad-bc = 1 \right\}$$

$$B = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \square \mathbf{Z}, ad-bc > 0 \right\}$$

$$C = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \square \mathbf{R}, ad-bc = 1 \right\}$$

$$D = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \square \mathbf{R}, ad-bc > 0 \right\}.$$

Answers:

- (a) B only,
- (b) B and C only,
- (c) A and C only,

- (d) A, C and D only,
- (e) all four.
- 2. Which of the following subgroups of \boldsymbol{D}_4 are normal subgroups?

$$H = \{e, f\},\$$

$$H = \{e, f\},$$
 $K = \{e, r, r^2, r^3\},$ $L = \{e, r^2\}.$

$$L = \{e, r^2\}$$

Answers:

- (a) H only, (b) K only, (c) K and L only, (d) H and K only,
 - Student's

(e) all three name: .

3. Compute the following product

$$\left(\begin{array}{rrr} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{array}\right) \ \ ^{-1} \left(\begin{array}{rrr} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{array}\right).$$

Find the conjugate of $(1\ 2)(3\ 4)\in S_4$ by $(1\ 2\ 3)$. 4.

Answers (to questions 3 and 4):

- (a) (1 2 3 4), (b) (1 3 2 4), (c) (1 2)(1 3),

- (d) $(1 \ 3)(2 \ 4)$,
- (e) $(1 \ 4)(2 \ 3)$.

	Student's name:
5.	How many nontrivial proper subgroups of the group \mathbf{U}_{24} are there?
6	Find the order of the element (1, 2, 2, 4, 5) of the group, S
6.	Find the order of the element (1 2 3 4 5) of the group S_5 .

7. Find the index of the cyclic subgroup $\langle (1 \ 2 \ 3 \ 4 \ 5) \rangle$.

Answers (to questions 3 to 5):

(a) 5, (b) 7, (c) 12, (d) 24, (e) 30

5.	Student's name:
6.	Find the order of the element (1 2 3 4 5) of the group S_5 .
7.	Find the index of the cyclic subgroup $\langle (1 \ 2 \ 3 \ 4 \ 5) \rangle$.

(a) 5, (b) 7, (c) 12, (d) 24, (e) 30

Student's name:					
Part 2. Partial credit given					
8.	An example in the textbook showed that the subset $\{[2], [4], [6], [8]\} \subseteq \mathbf{Z}_{10}$ is a group under multiplication with identity element [6]. Generalize this result by proving that for every prime number p the subset $\{2k k = 0, 1,, p - 1\} \subseteq \mathbf{Z}_{2k}$ is a group under multiplication mod $2p$ with identity element $p - 1$.				
9.	List all left cosets of the subgroup $\{e, \ (1\ 2)(3\ 4)\} < A_4$.				
	Student's name:				

10. The subset $\mathbf{Z}^+ \subseteq \mathbf{Z}$ is closed uder addition but is not a subgroup of \mathbf{Z} . Prove that if G is a **finite** group, then every subset closed under the group operation **is** a subgroup.

11. Let $f_a: \mathbf{R}^2 \to \mathbf{R}^2$ be given by $f_a(x, y) = (x + a, y + a)$. Prove that $\{f_n \mid n \in \mathbf{Z}\}$ with composition of mappings as operation is a group isomorphic to the group \mathbf{Z} .

Student's	

13.

14.

15.