Student's name:

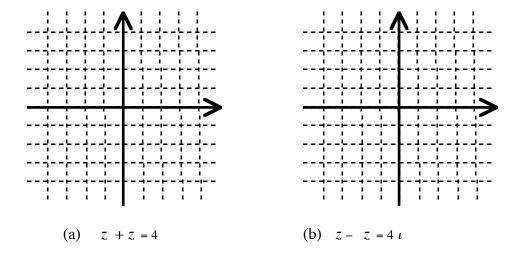
•

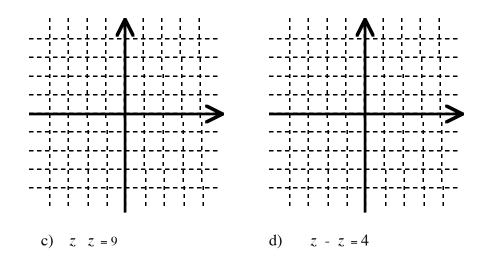
1. Let z = 3 + i, u = 4 - i. Compute the following

a)
$$\frac{z}{u} =$$
 , b) $z u =$, c) $|z| =$

2. Convert the number 2 - 2i to trigonometric form.

3. Graph the following equations





4. Find <u>all</u> fourth roots of $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$. Write them in the form a + bi.

5. Knowing that $1 - i\sqrt{3}$ is a cubic root of -8 and that $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$ is a primitive root of unity find all cubic roots of -8.

6. Prove that the set $\{z \in \mathbb{C} \mid |z| = 1\}$ forms a group under comlex multiplication. Is this subset a subring of the ring \mathbb{C} ?

7. Let $R = \mathbb{Z} \oplus \mathbb{Z} = \{(x, y) \mid x, y \in \mathbb{Z}\}$ with addition and multiplication defined by

$$(x, y) + (u, v) = (x + u, y + v), (x, y) (u, v) = (xv, yv)$$

and let $S = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \mid x, y \in \mathbf{Z} \right\}$ with matrix operations.

a) Prove that R and S are commutative rings with unity.

- b) Are they isomorphic? If so, show the isomorphism; if not explain why.
- c) Which of them, if any, is an integral domain? Prove your assertion.

- 8. Let $R = \left\{ \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} | x, y \in \mathbb{Z} \right\}$ with matrix operations and let the mapping $\phi : R \to \mathbb{Z}$ be given by $\phi \left(\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} \right) = x.$
 - a) Prove that *R* is a ring.
 - b) Is this ring commutative?
 - c) Is there a unity in R?
 - d) Is ϕ a ring homomorphism?
 - e) If yes, what is $ker(\phi)$?
 - f) Is the subring $\left\{ \begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix} | y \in \mathbf{Z} \right\}$ an ideal?
 - g) Is the subring $\left\{ \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} | x \in \mathbf{Z} \right\}$ an ideal?

Prove each of your answers.

9. The addition and multiplication tables on the set $S = \{0, e, a, c\}$ of four elements are as follows:

+	0	е	а	b	•	0	e	а	b
0	0	е	а	b	0	0	0	0	0
е	е	0	b	а	е	0	е	а	b
а	а	b	0	е	а	0	а	b	е
b	b	а	е	0	b	0	b	е	а

Granted that the two operations satisfy the associative and distributive laws, check whether S with these operations is

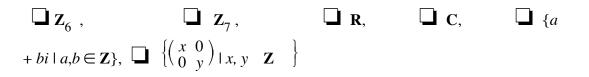
a) a ring

b) an integral domain

10. What is the characteristic of the following rings?

a)	$\mathbf{Z}_4 \oplus \mathbf{Z}_6$	
b)	\mathbf{Z}_7	
c)	\mathbf{Z}_9	
d)	\mathbf{Z}_{6}	
e)	Ζ	

11. In the following list of rings put a checkmark next to those that are integral domains.



12. Let *I* and *J* be ideals of a commutative ring *R*. Prove that the set $K = \{x + y \mid x \in I, y \in J\}$ is an ideal of *R*.