1. Construct the multiplication table for the subgroup H of D_6 generated by the set $A = \{fr^2, fr^4\}$. What is the order of H? What is the index of H in D_6 ?

2. Find the conjugate of the transposition (2 3) by the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix}$.

3. Show that the conjugate of an odd permutation is an odd permutation and the conjugate of an even permutation is an even permutation.

6. Show that a group, which satisfies the identity $(xy)^2 = x^2 y^2$, is abelian.

8. Verify that the mapping $\phi : M \to \mathbb{R}^*$, where M is the multiplicative group of all 2×2 non singular matrices and \mathbb{R}^* is the multiplicative group of nonzero real numbers, given by $\phi(x) = \det x$ is a homomorphism. What is the kernel of this homomorphism?

9. Verify that the mapping $\psi : \mathbf{R}^* \to \mathbf{R}$ from the multiplicative group of nonzero real numbers into the additive group of all real numbers given by formula $\phi(x) = \ln |x|$ is a homomorphism. What is the kernel of this homomorphism?

10.	Show that an epimorphism $\phi: G \to G'$ is an isomophism if and only if $\ker \phi = \{e\}$.
11.	What are the possible orders of nontrivial subgroups of a group of order 36? Which of them are necessarily realized in every group of order 36?

- 12 True or false?
 - (a) Every abelian group is cyclic.
 - (b) Every cyclic group is abelian.
 - (c) Two cyclic groups of the same order are isomorphic.
 - (d) Any two groups of the same order are isomorphic.
 - (e) Any two abelian groups of the same order are isomorphic.
 - (f) A homomorphic image of an abelian group is abelian.
 - (g) If some homomorphic image of a group G is abelian, then G itself is abelian.
 - (h) If H is a subgroup of G and N is a normal subgroup of G, then $H \cap N$ is a normal subgroup of H.
 - (i) If a normal subgroupo N of a group G is abelian and the factor group G/N is abelian, then G must be abelian.