MIDTERM MATH 436 PDE PART ONE

- 0. Read Sec 0.4 and 2.5 from the book
- 1. Find the Fourier series for the function f(x):
 - a) f(x) = 5x, $0 < x \le 2L$, f(x+2L) = f(x)
 - b) f(x) = 5x , $-L < x \le L$, f(x+2L) = f(x)

2. Find the complex Fourier series for the function

$$f(x) = \begin{cases} 1 & 0 & < x < L/2 \\ -1 & L/2 & < x < L \end{cases} , \quad f(x + L) = f(x)$$

3. Find the Fourier series for the function f (x) = lsin xl by using the fact that the function has period π . Give a formula for σ_n^2 (the mean square error).

4. A function f(x) is said to be even and odd-harmonic if it satisfies the conditions

$$f(-x) = f(x)$$
, $f(L+x) = -f(L-x)$.

Show that such a function is 4L-periodic.

5. Solve the following problems:

a)
$$\frac{\partial u}{\partial t} - K \frac{\partial^2 u}{\partial x^2} = 0$$
 for $0 < x < \pi$, $t > 0$
 $u(0,t) = u(\pi,t) = 0$
 $u(x,0) = \sin^3 x$
b) $\frac{\partial u}{\partial t} - K \frac{\partial^2 u}{\partial x^2} = 0$ for $a < x < b$, $t > 0$
 $u(a,t) = 0$

$$u(b,t) = 0$$

 $u(x,0) = (x-a) (b-a)$

6. Consider the following problem:

$$y_{tt} = c^{2} y_{ss} \quad t > 0 , \quad 0 < s < L$$

$$y (0;t) = 0 = y (L;t)$$

$$y (s;0) = \int_{-\frac{3}{2L}}^{\frac{3}{L}} \frac{s}{s} , \qquad 0 \le s \le \frac{L}{3}$$

$$y (s;0) = \frac{3}{2L} s + \frac{3}{2} , \quad \frac{L}{3} \le s \le L$$

$$y_{t} (s;0) = 1$$

Find the solution in the form of d'Alembert formula and graph it for t = $\frac{L}{2C}$ and t = $\frac{L}{4C}$.