MIDTERM MATH 436 PDE PART ONE

0. Read Sec 0.4 and 2.5 from the book
1. Find the Fourier series for the function $f(x)$:
a) $f(x)=5 x \quad, \quad 0<x \leq 2 L \quad, f(x+2 L)=f(x)$
b) $f(x)=5 x,-L<x \leq L \quad, f(x+2 L)=f(x)$
2. Find the complex Fourier series for the function

$$
f(x)=\left\{\begin{array}{rrl}
1 & 0 & <x<L / 2 \\
-1 & L / 2 & <x<L
\end{array}, \quad f(x+L)=f(x)\right.
$$

3. Find the Fourier series for the function $f(x)=|\sin x|$ by using the fact that the function has period π. Give a formula for $\sigma_{n}{ }^{2}$ (the mean square error).
4. A function $f(x)$ is said to be even and odd-harmonic if it satisfies the conditions

$$
f(-x)=f(x) \quad, \quad f(L+x)=-f(L-x)
$$

Show that such a function is 4 L -periodic.
5. Solve the following problems:
a) $\frac{\partial u}{\partial t}-K \frac{\partial^{2} u}{\partial x^{2}}=0$ for $0<x<\pi, t>0$
$u(0, t)=u(\pi, t)=0$
$u(x, 0)=\sin ^{3} x$
b) $\frac{\partial u}{\partial t}-K \frac{\partial^{2} u}{\partial x^{2}}=0$ for $a<x<b, \quad t>0$
$\mathrm{u}(\mathrm{a}, \mathrm{t})=0$
$u(b, t)=0$
$u(x, 0)=(x-a)(b-a)$
6. Consider the following problem:

$$
\begin{aligned}
& y_{t t}=c^{2} y_{s s} \quad t>0, \quad 0<s<L \\
& y(0 ; t)=0=y(L ; t) \\
& y(s ; 0)=-\frac{3}{2 L} s+\frac{3}{L} s, \quad \frac{L}{3} \leq s \leq L \\
& y_{t}(s ; 0)=1
\end{aligned}
$$

Find the solution in the form of d'Alembert formula and graph it for $t=\frac{L}{2 C}$ and $t=\frac{L}{4 C}$.

