1. (20) Evaluate each of the following sets, where
$A=\{2,8,12,16\}$
$B=\{4,0,8,16\}$
$C=\{12,4,16,14\}$
$U=\{0,2,4,6,8,10,12,14,16\}$
a) $\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}=$
b) $B-(A-C)=$
c) $\quad \mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}=$
d) $\left(\mathrm{C}^{\prime}\right)^{\prime}=$
e) $\quad \mathrm{A} \cup \mathrm{B} \cup \mathrm{C}=$

Is it a partition of U ?
2. (10) Prove the following statement.

If $A \subseteq B$ and $B \subseteq A$, then $A=B$
3. (10) Describe the following diagrams using sets $A, B, A^{\prime}, B^{\prime}, U$ and operations \cup (union), \cap (intersection), and - (complement)
4. (20) For the given $f: A \rightarrow B$, determine whether f is surjective, injective, or bijective. Justify your answer.
a) $\quad A=i x i, B=i \quad, f(x, y)=x^{2}+y^{2}$
b) $\quad A=\{0,1\} \times$ li$^{+}, B=\{0,1\} \quad, f(x, y)=x^{y}$
c) $A=i, B=i \quad, f(x)=2 x+5$
d) $\quad \mathrm{A}=\mathrm{i}, \mathrm{B}=\mathrm{i} \quad, \mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}0 & \text { if } \mathrm{x} \text { is even } \\ \frac{\mathrm{x}-3}{2} & \text { if } \mathrm{x} \text { is odd }\end{array}\right.$
5. (10) Let S be a set of four elements $\{0,1,-1,2\}$.

In the table below the result x * y (binary operation) is found in the row that starts with x at the left and in the column that has y at the the top. For example, 1 * $(-1)=1$

$*$	0	1	-1	2
0	1	-1	0	1
1	2	1	1	-1
-1	0	1	-1	2
2	1	-1	2	0

a) Find an identity element in S for *.
b) List all elements which have right inverses.
c) List all elements which have left inverses.
d) List all elements which have two-sided inverses.
e) Is the binary operation * commutative?
6. (10) In each part below, a relation R is defined on the set il. Determine whether R is reflexive, symmetric, or transitive.

$$
\text { a) } x R y \text { if and only if } y=2^{x}
$$

b) $x R y$ if and only if $x-y=4$
7. (10) Show that the following statements are true using Principle of Mathematical Induction.
a) $1+2+2^{2}+2^{3}+\ldots+2^{n}=\frac{1-2^{n+1}}{1-2}$
b) If $x \in i$ and $x \neq 0$, then $x^{4 n} \in i^{+}$, for every $\mathrm{n} \in \mathrm{I}^{+}$
8. (10) For a and b as given below, find q and r such that $a=b \cdot q+r, \quad o \leq r<b$

1) $a=135 \quad, b=268$
2) $a=-18, b=3$
