1. (20) Evaluate each of the following sets, where $A = \{2, 8, 12, 16\}$ $B = \{4, 0, 8, 16\}$ $C = \{12, 4, 16, 14\}$ $U = \{0, 2, 4, 6, 8, 10, 12, 14, 16\}$

a)
$$A \cap B \cap C =$$

c)
$$A' \cap B' =$$

e)
$$A \cup B \cup C =$$

Is it a partition of U?

2. (10) Prove the following statement.

If $A \subseteq B$ and $B \subseteq A$, then A = B

3. (10) Describe the following diagrams using sets A, B, A', B', U and operations \cup (union), \cap (intersection), and - (complement)

4. (20) For the given f: $A \rightarrow B$, determine whether f is surjective, injective, or bijective. Justify your answer.

a)
$$A = \hat{l} x \hat{l}$$
, $B = \hat{l}$, $f(x,y) = x^2 + y^2$

b)
$$A = \{0, 1\} \times \hat{l}^+, B = \{0, 1\}, f(x,y) = x^y$$

c)
$$A = \hat{l}$$
, $B = \hat{l}$, $f(x) = 2x + 5$

d)
$$A = \hat{l}$$
, $B = \hat{l}$, $f(x) = \begin{cases} 0 & \text{if } x \text{ is even} \\ \frac{x-3}{2} & \text{if } x \text{ is odd} \end{cases}$

5. (10) Let S be a set of four elements { 0, 1, -1 , 2 }. In the table below the result x * y (binary operation) is found in the row that starts with x at the left and in the column that has y at the the top. For example, 1 * (-1) = 1

*	0	1	-1	2
0	1	-1	0	1
1	2	1	1	-1
-1	0	1	-1	2
2	1	-1	2	0

- a) Find an identity element in S for *.
- b) List all elements which have right inverses.
- c) List all elements which have left inverses.
- d) List all elements which have two-sided inverses.
- e) Is the binary operation * commutative?

- 6. (10) In each part below, a relation R is defined on the set l.
 Determine whether R is reflexive, symmetric, or transitive.
 - a) x R y if and only if $y = 2^x$

b) x R y if and only if x - y = 4

7. (10) Show that the following statements are true using Principle of Mathematical Induction.

a)
$$1 + 2 + 2^2 + 2^3 + \ldots + 2^n = \frac{1 - 2^{n+1}}{1 - 2}$$

b) If
$$x \in \hat{l}$$
 and $x \neq 0$, then $x^{4n} \in \hat{l}^+$, for every $n \in \hat{l}^+$

8. (10) For a and b as given below, find q and r such that $a = b \cdot q + r$, $o \leq r < b$

1) a = 135 , b = 268

2)
$$a = -18$$
, $b = 3$