MATH 222

NAME_____

DATE MARCH 27, 1991

ALGEBRAIC STRUCTURES

MIDTERM #2

1	
2	
3	
4	
5	
6	
7	

1. (15) In each part, find the greatest common divisor (a,b) and integers m and n such that (a,b) = am + bn.

a) (10)
$$a = 5$$
, $b = -12$

b) (5)
$$a = 63$$
, $b = 72$

2. (15) Use Euclidean Algorithm to find a solution $x \in \hat{l}$, $0 \le x \le n$, for each of the congruences $ax = b \pmod{n}$. Note that in each case a and n are relatively prime.

a) (10) $15 x = 24 \pmod{31}$

b) (5) $5x = 25 \pmod{62}$

3. (20) Write down a multiplication table for l_5 and list all elements of l_5 that have multiplicative inverses.

- 4. (10) Determine if the following sets G with the operation indicated form a group. If not, point out which of the group axioms fail.
 - a) G = set of all integers, a * b = a b

b) G = set of all non-negative integers, a * b = a + b

Note: $0 \in G$.

- 5. (15) Let $G = \langle a \rangle$ be a cyclic group of order 15.
 - a) List all the distinct subgroups of G

b) List all the distinct generators of G

c) Suppose $G = \hat{l}_{15} = \langle [2] \rangle$ under addition. List all the distinct generators of \hat{l}_{15} . 6. (15) Consider two groups G_1 and G_2 defined by the following tables:

$$G_{1} = \{ 1, -1 \} \qquad G_{2} = \hat{l}_{2}$$

$$* \quad 1 \quad -1 \qquad + \quad [0] \quad [1]$$

$$1 \quad 1 \quad -1 \qquad [0] \quad [0] \quad [1]$$

$$-1 \quad -1 \quad -1 \qquad [1] \quad [1] \quad [0]$$

Let Φ : $G_1 \rightarrow G_2$ be defined by Φ (1) = [0] Φ (-1) = [1]

a) (10) Is Φ an isomorphism?

b) (5) Are G_1 and G_2 isomorphic to each other?

7. (10) a) Compute g f g^{-1} for the pair

f = (2, 4, 6) (3 5 7)

g = (1, 2, 4) (3 6 7)

b) For the given permutations f and h $\,$, find a permutation g $\,$ such that g f g_{-1} = h $\,$

f = (2 3) (5 6 7)h = (1 5) (4 6 7)