MATH 222
DATE MARCH 27, 1991
ALGEBRAIC STRUCTURES
MIDTERM \#2

1
2
3
4
5
6
7

1. (15) In each part, find the greatest common divisor (a, b) and integers m and n such that $(a, b)=a m+b n$.

$$
\text { a) (10) } a=5, b=-12
$$

b) (5) $\quad a=63, b=72$
2. (15) Use Euclidean Algorithm to find a solution $x \in I, \quad 0 \leq x \leq$ n , for each of the congruences $\mathrm{ax} \equiv \mathrm{b}(\bmod \mathrm{n})$. Note that in each case a and n are relatively prime.
a) (10)
$15 x=24(\bmod 31)$
b)
(5)
$5 x=25(\bmod 62)$
3. (20) Write down a multiplication table for İ ${ }_{5}$ and list all elements of I_{5} that have multiplicative inverses.
4. (10) Determine if the following sets G with the operation indicated form a group. If not, point out which of the group axioms fail.
a) $G=$ set of all integers, $a * b=a-b$
b) $G=$ set of all non-negative integers, $a * b=a+b$ Note: $0 \in \mathrm{G}$.
5. (15) Let $\mathrm{G}=\langle\mathrm{a}\rangle$ be a cyclic group of order 15.
a) List all the distinct subgroups of G
b) List all the distinct generators of G
c) Suppose $G=\mathrm{I}_{15}=<$ [2]> under addition. List all the distinct generators of I_{15}.
6. (15) Consider two groups G_{1} and G_{2} defined by the following tables:

$$
\begin{aligned}
& \mathrm{G}_{1}=\{1,-1\} \\
& \text { * } \\
& 1 \\
& 1 \\
& 1
\end{aligned}
$$

$$
\mathrm{G}_{2}=\mathrm{I}_{2}
$$

$$
+\quad[0] \quad[1]
$$

$$
[0] \quad[0] \quad[1]
$$

$$
[1] \quad[1] \quad[0]
$$

Let $\Phi: \mathrm{G}_{1} \rightarrow \mathrm{G}_{2}$ be defined by
$\Phi(1)=[0]$

$$
\Phi(-1)=[1]
$$

a) (10) Is Φ an isomorphism?
b) (5) Are G_{1} and G_{2} isomorphic to each other?
7. (10) a) Compute gf^{-1} for the pair

$$
\begin{aligned}
& f=(2,4,6)(357) \\
& g=(1,2,4)(367)
\end{aligned}
$$

b) For the given permutations f and h, find a permutation g such that $\mathrm{gf}_{\mathrm{g}}^{-1} \mathrm{~h}=\mathrm{h}$

$$
\begin{aligned}
& f=\left(\begin{array}{ll}
2 & 3
\end{array}\right)\left(\begin{array}{ll}
5 & 6
\end{array}\right) \\
& h=\left(\begin{array}{l}
1
\end{array}\right)\left(\begin{array}{ll}
4 & 6
\end{array}\right)
\end{aligned}
$$

