MATH 222
DATE APRIL 15, 1991
ALGEBRAIC STRUCTURES
MIDTERM \#3

1
2
3
4
5
6

1. (15) Determine in each of the parts if the given mapping $\Phi: G \rightarrow \mathrm{G}^{\prime}$ is a homorphism. If so, identify its kernel. Justify your answer.
(In what follows G and G^{\prime} are groups).
a) $\mathrm{G}=\mathrm{I}$ under,$+ \mathrm{G}^{\prime}=\mathrm{I}_{\mathrm{n}}$ under + $\Phi(\mathrm{a})=[\mathrm{a}] \quad$ for $\mathrm{a} \in \mathrm{l}$
b) $\quad \mathrm{G}=\mathrm{R}^{+}$(all positive reals) under multiplication, $\mathrm{G}^{\prime}=\mathrm{R}$ under addition, $\Phi(\mathrm{a})=\left(\log _{7} \mathrm{a}\right)$ for $\left(\mathrm{a} \in \mathrm{R}^{+}\right)$
c) G abelian group,
$\Phi: G \rightarrow G$ defined by
$\Phi(\mathrm{a})=\mathrm{a}^{-1} \quad$ for $\mathrm{a} \in \mathrm{G}$
2. (10) Show that if $\Phi: G \rightarrow \mathrm{G}^{\prime}$ is a homomorphism from group G to group G^{\prime}, then:
(a) $\Phi(e)=e^{\prime}$, the unit element of G^{\prime}
(b) $\quad \Phi\left(b^{-1}\right)=\Phi(b)^{-1}$ for all $b \in G$
3. (15) Decide if each of the following sets is an integral domain. Is it a field? Justify your answers.
(a) İ8 under usual addition and multiplication.
(b) İ 23 under usual addition and multiplication
(c) The set of all real numbers of the form

$$
m+n \sqrt{5} \quad \text {, here } m, n \in i
$$

with the usual addition and multiplication of real numbers.
4. (20) For every group G and subgroup H find index of H in G . Is H a normal subgroup? Justify your answers.
(a) (5) $\mathrm{G}=\mathrm{S}_{3}$, symmetric group, $\mathrm{H}=\{(1)\}$
(b) (15) $\mathrm{G}=\mathrm{S}_{3}, \mathrm{H}=\{(1),(1,2)\}$
5. (20) Let G be the group of all non zero real numbers under multiplication and N be the subgroup of all positive real numbers.
(a) (10) Write out G / N by exhibiting the cosets of N in G .
(b) (10) Construct multiplication table for G / N and show that G / N is a group.
6. (20) Let R be the ring of all 2×2 matrices over Ì (with respect to addition and multiplication of matrices). Consider the subset S of R that consists of all 2×2 matrices of the form.

$$
\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right) \quad, \text { where } a, b \in i ̀ .
$$

(a) (10) Show that S is a subring of R.
(b) (10) Is it a field? Justify your answer.

