١	4	Α	T	Ή	2	2	2
---	---	---	---	---	---	---	---

NAME				
------	--	--	--	--

DATE APRIL 15, 1991

ALGEBRAIC STRUCTURES

MIDTERM #3

1	
2	
3	
4	
5	
6	

1. (15) Determine in each of the parts if the given mapping Φ : $G \to G'$ is a homorphism. If so, identify its kernel. Justify your answer.

(In what follows G and G' are groups).

a) $G = \hat{\mathbb{I}} \text{ under } + , G' = \hat{\mathbb{I}}_n \text{ under } + \Phi(a) = [a]$ for $a \in \hat{\mathbb{I}}$

b) $G = R^+$ (all positive reals) under multiplication, G' = R under addition, $\Phi(a) = (\log_7 a)$ for $(a \in R^+)$

c) G abelian group, $\Phi\colon \ G \ \to \ G \ \ defined \ by$

$$\Phi$$
 (a) = a^{-1} for $a \in G$

- 2. (10) Show that if $\Phi: G \to G'$ is a homomorphism from group G to group G', then:
 - (a) Φ (e) = e', the unit element of G'

(b) $\Phi(b^{-1}) = \Phi(b)^{-1}$ for all $b \in G$

- 3. (15) Decide if each of the following sets is an integral domain. Is it a field? Justify your answers.
 - (a) 18 under usual addition and multiplication.

(b) \$\dagger*\text{\$\graphi_{23}\$}\$ under usual addition and multiplication

(c) The set of all real numbers of the form $m+n\sqrt{5} \quad , \ \ \ \, \text{here} \ \ \, m,n\in\mathring{L} \, ,$ with the usual addition and multiplication of real numbers.

4. (20) For every group G and subgroup H find index of H in G. Is H a normal subgroup? Justify your answers.

(a) (5)
$$G = S_3$$
, symmetric group, $H = \{ (1) \}$

(b) (15)
$$G = S_3$$
, $H = \{ (1), (1,2) \}$

- 5. (20) Let G be the group of all non zero real numbers under multiplication and N be the subgroup of all positive real numbers.
 - (a) (10) Write out G/N by exhibiting the cosets of N in G.

(b) (10) Construct multiplication table for G/N and show that G/N is a group.

6. (20) Let R be the ring of all 2 x 2 matrices over l (with respect to addition and multiplication of matrices). Consider the subset S of R that consists of all 2 x 2 matrices of the form.

$$\left(\begin{smallmatrix} a & b \\ o & a \end{smallmatrix} \right) \qquad \text{, where a, b} \in \dot{\mathbb{I}}.$$

(a) (10) Show that S is a subring of R.

(b) (10) Is it a field? Justify your answer.