1. (15) Describe the sets represented by the following Venn diagrams.
a)
b)
c)
2. (20) For each of the mappings
f : $\mathrm{I} \rightarrow \mathrm{I}$ given below,
determine if the mapping is surjective, injective, or bijective. Justify your answers.
a)(5) $f_{1}(x)= \begin{cases}1 & , \text { if } x \text { is odd } \\ 5 x & , \text { if } x \text { is even }\end{cases}$
b) (5) $f_{2}(x)=5 x+1$
c) (10) Compute $\left(f_{2} \circ f_{1}\right)(x)$ and determine if it is surjective, injective, or bijective.
3. (10) Find the greatest common divisor and integers m and n such that

$$
(a, b)=a m+b n
$$

1) $\mathrm{a}=99, \mathrm{~b}=204$
2) $\mathrm{a}=-10, \mathrm{~b}=66$
4. (20) Find a solution $x \in I \quad, 0 \leq x<n$, for the following congruences
a) $5 x=7(\bmod 9)$
b) $12 x \equiv 16(\bmod 24)$
5. (30) Consider the following subset of the ring $M_{2 \times 2}$ of 2×2 matrices over İ

$$
S=\left\{\left.\left[\begin{array}{ll}
a & b \\
o & c
\end{array}\right] \right\rvert\, a, b, c \quad i\right.
$$

a) Show that S is a subring of $M_{2 \times 2}$ with respect to matrix addition and multiplication
b) Show that

$$
I=\left\{\left.\left[\begin{array}{ll}
0 & d \\
0 & 0
\end{array}\right] \right\rvert\, \begin{array}{lll}
d & i
\end{array}\right\}
$$

is an ideal of S .
c) Show that the mapping

$$
\Phi: S \rightarrow i \quad \text { defined by }
$$

$\Phi \quad\left(\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]\right)=a^{2}$
is an epiomorphism
d) Describe $\operatorname{ker} \Phi$
e) Describe $M / I=$, quotient ring of I.
6. (10) Let \grave{l} be a field of real numbers. List all ideals of $\grave{1}$. Justify your answer.
7. (15) Let $G=\langle a\rangle$ be a cyclic group of order 15.
a) List all generators of G
b) List all distinct subgroups of G
c) What is the cyclic subgroup of Ì generated by (-2) under + ?
8. (10) $\quad \ln \left(I_{6},+\right)$, write down all the cosets of the subgroup $H=\{[0],[3]\}$. What is the index of H ?
9. (10) Show that for $x, y, z \in D$, an ordered integral domain, the following is true
a) If $x>y$ and $y>z$, then $x>z$
b) If $x>y$, then $2 x>2 y$
10. (10) Find the characteristic of the following rings. Justify your answer.
a) $\quad \mathrm{I}_{21}$
b) $\dot{I}_{3} \otimes \dot{I}_{4}$

