1. (15) Describe the sets represented by the following Venn diagrams.

a)

b)

c)

2. (20) For each of the mappings

f : $\hat{l} \rightarrow \hat{l}$ given below,

determine if the mapping is surjective, injective, or bijective. Justify your answers.

a)(5) $f_1(x) = \begin{cases} 1 & , \text{ if } x \text{ is odd} \\ 5x & , \text{ if } x \text{ is even} \end{cases}$

b)(5) $f_2(x) = 5x + 1$

c)(10) Compute $(f_2 \circ f_1)$ (x) and determine if it is surjective, injective, or bijective.

3. (10) Find the greatest common divisor and integers m and n such that

$$(a,b) = am + bn$$

1)
$$a = 99$$
, $b = 204$

4. (20) Find a solution $x \in \mathring{l}$, $0 \leq x < n,$ for the following congruences

a) $5x = 7 \pmod{9}$

b) $12x \equiv 16 \pmod{24}$

5. (30) Consider the following subset of the ring M_{2x2} of 2x2 matrices over \mathring{l}

$$S = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \middle| a, b, c \quad \hat{l} \right\}$$

a) Show that S is a subring of M_{2x2} with respect to matrix addition and multiplication

b) Show that

$$I = \left\{ \begin{array}{cc} \left[\begin{array}{c} o & d \\ o & o \end{array} \right] & d & \hat{l} \end{array} \right\}$$

is an ideal of S.

c) Show that the mapping

$$\Phi: S \to \hat{l} \text{ defined by}$$
$$\Phi \quad \left(\begin{bmatrix} a & b \\ o & c \end{bmatrix} \right) = a^2$$

is an epiomorphism

d) Describe ker Φ

e) Describe M/I =, quotient ring of I.

6. (10) Let \hat{i} be a field of real numbers. List all ideals of \hat{i} . Justify your answer.

- 7. (15) Let $G = \langle a \rangle$ be a cyclic group of order 15.
 - a) List all generators of G

b) List all distinct subgroups of G

c) What is the cyclic subgroup of \mathring{l} generated by (–2) under + ?

8. (10) In $(\hat{l}_6, +)$, write down all the cosets of the subgroup H = { [0], [3]}. What is the index of H? 9. (10) Show that for x, y, z \in D, an ordered integral domain, the following is true

a) If x > y and y > z, then x > z

b) If x > y, then 2x > 2y

10. (10) Find the characteristic of the following rings. Justify your answer.

a) ĺ₂₁

b) $\hat{l}_3 \otimes \hat{l}_4$