Name: \qquad

Exam 3

This examination contains 4 problems on 5 sheets of paper. Show all your work. I doubt that calculators will help much.

Points

Question	Possible	Earned		Question	Possible
1	25		Earned		
2	25		25		
			25		
		Total	100		

1. Consider the group S_{7}, the symmetric group on $\{1,2, \ldots, 7\}$. Let

$$
\sigma=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
7 & 3 & 2 & 1 & 4 & 5 & 6
\end{array}\right) \in S_{7}
$$

(a). Write σ in cycle notation.
(b). Compute the order of σ.
(c). Decide whether σ lies in A_{7}, the alternating group. Be sure to explain carefully your reasoning.
2. You are given that the group of units of \mathbb{Z}_{11} is cyclic and is generated by, for example, the number 6 which therefore has order 10 (you may check this fact if you like, but this is not required.)

Recall we showed in class that $\mathbb{Z}_{11}[i]$ is a field, where $i^{2}=-1=10$. There are $11^{2}-1=120$ units in $Z_{11}[i]$.
(a). Let $\alpha=4+3 i \in \mathbb{Z}_{11}[i]$. Show that α has order 60 in $\mathbb{Z}_{11}[i]$. (Hint: what is the order of α^{6} ?)
(b). Find a solution β in $\mathbb{Z}_{11}[i]$ to the equation $X^{2}=\alpha$. Deduce that β has order 120 and hence that the unit group of $\mathbb{Z}_{11}[i]$ is cyclic. (See hint below.)
(Hint: if $\beta=a+b i$, then $\beta^{2}=\left(a^{2}-b^{2}\right)+2 a b i$, so you need to find $a, b \in \mathbb{Z}_{11}$ so that $a^{2}-b^{2}=4$ and $2 a b=3$. The following table may be helpful - you fill in the a^{2} column.

b	$a=\frac{3}{2 b}$	b^{2}	a^{2}	b	$a=\frac{3}{2 b}$	b^{2}	a^{2}
1	7	1		6	3	3	
2	9	4		7	1	5	
3	6	9		8	5	9	
4	10	5		9	2	4	
5	8	3		10	4	1	

Now find β.)
(c). Find a unit $u \in \mathbb{Z}_{11}[i]$ or order 15 . (You may leave your representation of u in any form you like).
3. Consider the d cycle $\sigma_{d}=(1,2,3,4, \ldots, d)$ in S_{n} for $1 \leq d \leq n$. In particular, $\sigma_{1}=1$, the identity permutation.
(a). Fix $2 \leq d \leq n$. Find a transposition $\tau=(i, j) \in S_{n}$ so that $\sigma_{d} \tau=\sigma_{d-1}$.
(b). Using (a), prove by induction that $\operatorname{sign}\left(\sigma_{d}\right)=(-1)^{d-1}$.
(c). What is the condition on d so that $\sigma_{d} \in A_{n}$, the alternating group?
4. Consider the group D_{8}, the group of symmetries of a 8 -gon. Let $r=(123 \ldots 8)$ be the clockwise rotation of the 8 -gon; r generates the group $R_{8}<D_{8}$.

Let $f_{1}=(28)(37)(46)$ denote the "flip" which leaves the vertices 1 and 5 of the 8 -gon fixed.
(a). Prove that $r^{4} f_{1}=f_{1} r^{4}$.
(b). Let $H=\left\{1, r^{4}, f_{1}, r^{4} f_{1}\right\}$. Prove that H is a subgroup of G (of order 4, of course).
(c). Prove that H is not a cyclic group, but that H is Abelian (i.e commutative).

