Name: \qquad

Mathematics 222.02: Algebraic Structures Spring Semester 1998

Exam 1
February 9, 1998

This Examination contains 7 problems on 6 sheets of paper including the front cover. Do all your work in this booklet and show your computations. Calculators, books, and notes are not allowed.

Scores

Question	Possible	Actual
1	10	
2	15	
3	15	
4	15	
5	15	
6	15	
7	15	
Total	100	

Sign the pledge:

"On my honor, I have neither given nor received unauthorized aid on this Exam."
Signature: \qquad

1. Let $\alpha=-3+7 i \in \mathbb{Z}[i]$. Find another number $\beta \in \mathbb{Z}[i]$ so that $\alpha \beta=m(1+i)$ for some integer $m \in \mathbb{Z}$.
2.

(a) Use the division algorithm for integers to find the base 5 representation of the number 303. In other words, find coefficients

$$
0 \leq r_{i}<5
$$

so that

$$
303=r_{m} 5^{m}+r_{m-1} 5^{m-1}+\cdots+r_{1} 5+r_{0} .
$$

(b) What would you find a reasonable base 5 representation for -1515 ?
3. Consider the ring $\mathbb{Z}[\sqrt{5}]=\{a+b \sqrt{5}: a, b \in \mathbb{Z}\}$.
(a) Find an integer a so that the number $\alpha=a+\sqrt{5}$ satisfies the inequality $0<\alpha<1$. Show also that α is a unit in $\mathbb{Z}[\sqrt{5}]$.
(b) Show that there exists a number $\beta \in \mathbb{Z}[\sqrt{5}]$ which lies between 1 and $\frac{5}{4}$ on the number line.
(c) Assume that you know $\sqrt{5}$ to be an irrational number. Let $\alpha=a+b \sqrt{5} \in \mathbb{Q}(\sqrt{5})$, so $a, b \in \mathbb{Q}$. Suppose $\alpha \neq 0$. Find a formula for $c, d \in \mathbb{Q}$ so that

$$
\frac{1}{\alpha}=c+d \sqrt{5} .
$$

Where do you need $\sqrt{5}$ being irrational? Explain this in detail.
4. For each of the pairs $\alpha, \beta \in \mathbb{Z}[i]$ below, find $\gamma, \rho \in \mathbb{Z}[i]$ so that

$$
\beta=\alpha \gamma+\rho, \quad \text { and } \quad N(\rho)<N(\alpha) .
$$

(a) $\alpha=-1+3 i, \beta=21$
(b) $\alpha=1-1 i, \beta=2+8 i$
5. For each pair of polynomials f and g below, find polynomials q and r so that

$$
g=q f+r \quad \text { and } \quad \operatorname{deg}(r)<\operatorname{deg}(f) .
$$

In each case, regard the coefficients of f and g as coming from the coefficient ring R.
(a) $\quad R=\mathbb{Z}[\sqrt{2}], \quad g=X^{3}-X^{2}+X+1, \quad f=X-(1+\sqrt{2})$.
(b) $\quad R=\mathbb{Z}_{13}, \quad g=X^{4}+12, \quad f=X^{3}+X^{2}+X+1$.
6. Suppose that y is a root of the polynomial

$$
X^{5}+(n-1)
$$

in \mathbb{Z}_{n}, where n is a positive integer. Show that y is a unit in \mathbb{Z}_{n}.
7. Let $a=90$ and $b=168$.
(a) Find $\operatorname{gcd}(a, b)$.
(b) Find $t, s \in \mathbb{Z}$ so that $t a+s b$ divides both a and b.

