\qquad

Mathematics 222.02: Algebraic Structures Spring Semester 1998
Exam 3
April 20, 1998

This Examination contains 8 problems on 5 sheets of paper including the front cover. Do all your work in this booklet and show your computations. Calculators, books, and notes are not allowed.

Question	Possible	Actual
1	10	
2	15	
3	10	
4	15	
5	10	
6	15	
7	10	
8	15	
Total	100	

Sign the pledge:

"On my honor, I have neither given nor received unauthorized aid on this Exam."
Signature: \qquad

GOOD LUCK

1. Give three different ways to write the integer 252 as a product of prime numbers.
2. Show that there are infinitely many prime numbers.
3. In $\mathbb{Z}[i]$ the following equation is true

$$
5=(2+i)(2-i)=(1+2 i)(1-2 i)
$$

(a) Show that both products are factorizations of 5 into Gaussian primes.
(b) How does the result of (a) relate to the fact that $\mathbb{Z}[i]$ is a unique factorization domain? Give the exact relationship between the two factorizations.
4. Factorize the following numbers into primes in $\mathbb{Z}[\sqrt{2}]$.
(a) $4-5 \sqrt{2}$,
(b) 17,
(c) $87-58 \sqrt{2}$,
(d) 83 .
5. An n-cycle is a cycle of length n, i. e. a permutation of the form ($a_{1} a_{2} \ldots a_{n}$) with different a_{i}. Prove: A_{n} contains an n-cycle exactly when n is odd.
6. Consider the symmetric group S_{6}.
(a) Give three different elements of order 6 in S_{6}.
(b) Give a subgroup of S_{6} with order 24. (You don't have to list all elements of this subgroup!).
(c) Give a subgroup of S_{6} with order 5 .
7. Let $\sigma=(15)(2473)$ and $\tau=(3562)(147)$ in S_{7}.
(a) Calculate $\operatorname{sgn} \sigma$.
(b) Calculate $\sigma \tau^{2} \sigma^{-1}$.
(c) Find a permutation $\rho \in S_{7}$ so that $\rho \sigma=(251473)$.
8. Prove by induction: $1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots+(n-1) \cdot n=\frac{(n-1) n(n+1)}{3}$ for all $n \geq 2$. Give all details of the induction.

