Mathematics 222.02: Algebraic Structures Spring Semester 1998 Exam 3 April 20, 1998

This Examination contains 8 problems on 5 sheets of paper including the front cover. Do all your work in this booklet and show your computations. Calculators, books, and notes are not allowed.

Question	Possible	Actual
1	10	
2	15	
3	10	
4	15	
5	10	
6	15	
7	10	
8	15	
Total	100	

Sign the pledge:

"On my honor, I have neither given nor received unauthorized aid on this Exam."

Signature:

GOOD LUCK

1. Give three different ways to write the integer 252 as a product of prime numbers.

2. Show that there are infinitely many prime numbers.

3. In $\mathbb{Z}[i]$ the following equation is true

$$5 = (2+i)(2-i) = (1+2i)(1-2i)$$

(a) Show that both products are factorizations of 5 into Gaussian primes.

(b) How does the result of (a) relate to the fact that $\mathbb{Z}[i]$ is a unique factorization domain? Give the exact relationship between the two factorizations.

4. Factorize the following numbers into primes in Z[√2].
(a) 4 − 5√2,

(b) 17,

(c) $87 - 58\sqrt{2}$,

(d) 83.

5. An *n*-cycle is a cycle of length n, i. e. a permutation of the form $(a_1 a_2 \ldots a_n)$ with different a_i . **Prove:** A_n contains an *n*-cycle exactly when n is odd.

- **6.** Consider the symmetric group S_6 .
 - (a) Give three different elements of order 6 in S_6 .

(b) Give a subgroup of S_6 with order 24. (You don't have to list all elements of this subgroup!).

(c) Give a subgroup of S_6 with order 5.

7. Let $\sigma = (15)(2473)$ and $\tau = (3562)(147)$ in S_7 . (a) Calculate sgn σ .

(b) Calculate $\sigma \tau^2 \sigma^{-1}$.

(c) Find a permutation $\rho \in S_7$ so that $\rho \sigma = (251473)$.

8. Prove by induction: $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + (n-1) \cdot n = \frac{(n-1)n(n+1)}{3}$ for all $n \ge 2$. Give all details of the induction.