Review for Exam 2

1. Prove: If $a, b \in \mathbb{Z}$ are relatively prime, then for every $c \in \mathbb{Z}$ there exist integers s and t so that $c=s a+t b$.
2. Let p be a prime number. Show that if p divides the product $a b$, then p divides a or p divides b.
3. Find all associates of 6 in \mathbb{Z}_{10}.
4. Find all greatest common divisors of $11+2 i$ and $-7+i$ in $\mathbb{Z}[i]$ and give a Bezout-equation for one of them.
5. Prove: If $a \neq 0$ is not a zero-divisor in a commutative ring R and if there are x and y in R so that $a x=a y$, then it is $x=y$.
6. Let a, b be integers and p be a prime number.

Prove: If $a^{2} \equiv b^{2}(\bmod p)$, then p divides $a-b$ or p divides $a+b$.
7. Let R be a commutative ring. Assume that for two elements $a, b \in R$ we know that a, b, and $a+b$ are all units in R. Show that then also $a^{-1}+b^{-1}$ is a unit in R.
[Hint: Calculate the fraction $\frac{1}{a}+\frac{1}{b}$.]
8. Consider the ring \mathbb{Z}_{27}.
(a) List all units.
(b) Find the inverse of the element 16 in \mathbb{Z}_{27} and give the result as a number between 1 and 26 .
(c) Calculate $\frac{13}{16}$.
(d) List the powers of 2 and find the order of the element 2. [Part (a) gives you a hint for what the order of 2 could be.]
(e) What is the order of 25 ?
9. (a) Define carefully the notion of a zero-divisor.
(b) Show that if the integers a and n are not relatively prime, then a is a zero-divisor in \mathbb{Z}_{n}.
(c) What do you know about a as an element of \mathbb{Z}_{n}, if a and n are relatively prime?
(d) Conclude from (a) and (b) that a is a zero-divisor in \mathbb{Z}_{n} exactly when a and n are not relatively prime.
10. Consider the ring \mathbb{Z}_{37}. The order of 2 is 36 in this ring (You don't have to check this!).
(a) Find an element a of order 4.
(b) Give both square roots of -1 .
11. (a) Show that the polynomial $p(X)=3 X^{3}+2 X^{2}-4 X+2$ has no roots in \mathbb{Z}.
(b) Show that $\frac{3}{5}$ is not a root of a monic polynomial with integer coefficients.
12. Show that there exists no element $a+b \sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ with the property $(a+b \sqrt{2})^{k}=1+\sqrt{2}$ for some $k>1$.
13. Suppose \mathbb{Z}_{p} contains a unit of order 5 . Show that $p=1+10 k$ for some $k \in \mathbb{Z}$.

The first such prime is $p=11$. What is the next such prime? Can you find a unit of order 5 in the ring \mathbb{Z}_{p} for your p ?
14. Let $a=21$ and $b=40$.
(a) Find $x, y \in \mathbb{Z}$ so that

$$
x \equiv 1(\bmod 21), \quad x \equiv 0(\bmod 40), \quad y \equiv 0(\bmod 21), \quad y \equiv 1(\bmod 40)
$$

(b) Find $z \in \mathbb{Z}$ so that simultaneously

$$
z=3+21 k \text { and } z=2+40 l
$$

for some choice of $k, l \in \mathbb{Z}$.

