Review for Exam 2

- **1.** Prove: If $a, b \in \mathbb{Z}$ are relatively prime, then for every $c \in \mathbb{Z}$ there exist integers s and t so that c = sa + tb.
- **2.** Let p be a prime number. Show that if p divides the product ab, then p divides a or p divides b.
- **3.** Find all associates of 6 in \mathbb{Z}_{10} .
- 4. Find all greatest common divisors of 11 + 2i and -7 + i in $\mathbb{Z}[i]$ and give a Bezout-equation for one of them.
- 5. Prove: If $a \neq 0$ is not a zero-divisor in a commutative ring R and if there are x and y in R so that ax = ay, then it is x = y.
- 6. Let a, b be integers and p be a prime number. **Prove:** If $a^2 \equiv b^2 \pmod{p}$, then p divides a - b or p divides a + b.
- 7. Let R be a commutative ring. Assume that for two elements a, b ∈ R we know that a, b, and a + b are all units in R. Show that then also a⁻¹ + b⁻¹ is a unit in R. [Hint: Calculate the fraction ¹/_a + ¹/_b.]
- 8. Consider the ring Z₂₇.
 (a) List all units.
 - (b) Find the inverse of the element 16 in \mathbb{Z}_{27} and give the result as a number between 1 and 26.
 - (c) Calculate $\frac{13}{16}$.
 - (d) List the powers of 2 and find the order of the element 2. [Part (a) gives you a hint for what the order of 2 could be.]
 - (e) What is the order of 25?
- 9. (a) Define carefully the notion of a zero-divisor.
 - (b) Show that if the integers a and n are not relatively prime, then a is a zero-divisor in \mathbb{Z}_n .
 - (c) What do you know about a as an element of \mathbb{Z}_n , if a and n are relatively prime?
 - (d) Conclude from (a) and (b) that a is a zero-divisor in \mathbb{Z}_n exactly when a and n are not relatively prime.

- 10. Consider the ring Z₃₇. The order of 2 is 36 in this ring (You don't have to check this!).
 (a) Find an element a of order 4.
 - (b) Give both square roots of -1.
- 11. (a) Show that the polynomial $p(X) = 3X^3 + 2X^2 4X + 2$ has no roots in \mathbb{Z} .
 - (b) Show that $\frac{3}{5}$ is not a root of a monic polynomial with integer coefficients.
- 12. Show that there exists no element $a + b\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ with the property $(a + b\sqrt{2})^k = 1 + \sqrt{2}$ for some k > 1.
- **13.** Suppose \mathbb{Z}_p contains a unit of order 5. Show that p = 1 + 10k for some $k \in \mathbb{Z}$. The first such prime is p = 11. What is the next such prime? Can you find a unit of order 5 in the ring \mathbb{Z}_p for your p?
- **14.** Let a = 21 and b = 40.
 - (a) Find $x, y \in \mathbb{Z}$ so that

 $x \equiv 1 \pmod{21}, \qquad x \equiv 0 \pmod{40}, \qquad y \equiv 0 \pmod{21}, \qquad y \equiv 1 \pmod{40}$

(b) Find $z \in \mathbb{Z}$ so that simultaneously

$$z = 3 + 21k$$
 and $z = 2 + 40l$

for some choice of $k, l \in \mathbb{Z}$.