Review for Exam 3

- **1.** Let p and q be positive prime numbers. List all positive divisors of pq^3 .
- **2.** Write -525 as a product of prime numbers.
- **3.** Given k different prime numbers p_1, \ldots, p_k . Construct a prime number which is not on this list.
- 4. Write both 3 4i and 6 + 9i as products of Gaussian primes. Show also that the two given Gaussian integers are relatively prime.
- Give all associates of 3 in
 (a) in Z,
 - (b) in $\mathbb{Z}[i]$,
 - (c) in $\mathbb{Z}[\sqrt{2}]$.
- 6. Factorize 61 into primes in the ring(a) Z,
 - (b) $\mathbb{Z}[i]$,
 - (c) $\mathbb{Z}[\sqrt{2}]$.
- 7. Factorize $28 + 16i \in \mathbb{Z}[i]$ into Gaussian primes.
- 8. Let $p \in \mathbb{Z}$ be a prime number and $\alpha, \beta \in \mathbb{Z}[i]$ be Gaussian integers with β not being a unit. **Prove:** If $\alpha\beta = p^2$, then $N(\alpha) = p^k$ for some integer $k \leq 3$.
- **9.** For all of the following $p \in \mathbb{Z}$ state whether p is a Gaussian prime or not. If not, give a factorization of p into two non-units.

(a) p = 31 (b) p = 33 (c) p = 2 (d) p = 101 (e) p = 103.

10. Consider the symmetric group S_7 .

- (a) Give all elements of S_7 , which are in D_7 , and represent them as product of disjoint cycles. Give also the sign sgn σ of all these elements.
- (b) Can you give a way to write S_3 as a subgroup of S_7 ?
- (c) Give an element of order 7 in S_7 .

- (d) Give a subgroup of order 4.
- **11.** A k-cycle is a cycle of length k, i. e. a permutation of the form $(a_1 \ a_2 \ \dots a_k)$ with different a_i . **Prove:** A k-cycle is its own inverse exactly when k = 2.
- 12. Let $\sigma = (253)$ and $\tau = (124)$ in S_5 . Calculate (a) $\tau\sigma$,
 - (b) $\sigma\tau\sigma^{-1}$,
 - (c) σ^{17} ,
 - (d) find $\alpha \in S_5$ so that $\alpha \sigma(14) = (123)$.

13. Prove: If $G \subseteq S_n$ is a subgroup containing all permutations then $G = S_n$. 2)and(12345),

14. In $\mathbb{Z}[\sqrt{2}]$ the following equation is true

$$(5+2\sqrt{2})(-3+5\sqrt{2}) = 5+19\sqrt{2} = (7-4\sqrt{2})(11+9\sqrt{2}).$$

- (a) Calculate the norms of all factors given in the products on the left and on the right and show that these factors are prime elements in $\mathbb{Z}[\sqrt{2}]$.
- (b) How does the result of (a) relate to the fact that $\mathbb{Z}[\sqrt{2}]$ is a unique factorization domain? Give the exact relationship between the two factorizations.

15. Consider the ring $\mathbb{Z}[2i] = \{a + 2bi \mid a, b \in \mathbb{Z}\}$, which can be regarded as a subset of $\mathbb{Z}[i]$.

- (a) Determine the units of $\mathbb{Z}[2i]$,
- (b) Show that $\mathbb{Z}[2i]$ is not a unique factorization domain by giving two appropriate factorizations of $4 \in \mathbb{Z}[2i]$.
- 16. Prove by induction: 5 divides $3^{4n} 1$ for all $n \ge 1$.