Review for Exam 3

1. Let p and q be positive prime numbers. List all positive divisors of $p q^{3}$.
2. Write -525 as a product of prime numbers.
3. Given k different prime numbers p_{1}, \ldots, p_{k}. Construct a prime number which is not on this list.
4. Write both $3-4 i$ and $6+9 i$ as products of Gaussian primes. Show also that the two given Gaussian integers are relatively prime.
5. Give all associates of 3 in
(a) in \mathbb{Z},
(b) in $\mathbb{Z}[i]$,
(c) in $\mathbb{Z}[\sqrt{2}]$.
6. Factorize 61 into primes in the ring
(a) \mathbb{Z},
(b) $\mathbb{Z}[i]$,
(c) $\mathbb{Z}[\sqrt{2}]$.
7. Factorize $28+16 i \in \mathbb{Z}[i]$ into Gaussian primes.
8. Let $p \in \mathbb{Z}$ be a prime number and $\alpha, \beta \in \mathbb{Z}[i]$ be Gaussian integers with β not being a unit. Prove: If $\alpha \beta=p^{2}$, then $N(\alpha)=p^{k}$ for some integer $k \leq 3$.
9. For all of the following $p \in \mathbb{Z}$ state whether p is a Gaussian prime or not. If not, give a factorization of p into two non-units.
(a) $p=31$
(b) $p=33$
(c) $p=2$
(d) $p=101$
(e) $p=103$.
10. Consider the symmetric group S_{7}.
(a) Give all elements of S_{7}, which are in D_{7}, and represent them as product of disjoint cycles. Give also the sign $\operatorname{sgn} \sigma$ of all these elements.
(b) Can you give a way to write S_{3} as a subgroup of S_{7} ?
(c) Give an element of order 7 in S_{7}.
(d) Give a subgroup of order 4 .
11. A k-cycle is a cycle of length k, i. e. a permutation of the form $\left(a_{1} a_{2} \ldots a_{k}\right)$ with different a_{i}. Prove: A k-cycle is its own inverse exactly when $k=2$.
12. Let $\sigma=(253)$ and $\tau=(124)$ in S_{5}. Calculate
(a) $\tau \sigma$,
(b) $\sigma \tau \sigma^{-1}$,
(c) σ^{17},
(d) find $\alpha \in S_{5}$ so that $\alpha \sigma(14)=(123)$.
13. Prove: If $G \subseteq S_{n}$ is a subgroup containing all permutations then $G=S_{n}$. 2) and(12345),
14. In $\mathbb{Z}[\sqrt{2}]$ the following equation is true

$$
(5+2 \sqrt{2})(-3+5 \sqrt{2})=5+19 \sqrt{2}=(7-4 \sqrt{2})(11+9 \sqrt{2}) .
$$

(a) Calculate the norms of all factors given in the products on the left and on the right and show that these factors are prime elements in $\mathbb{Z}[\sqrt{2}]$.
(b) How does the result of (a) relate to the fact that $\mathbb{Z}[\sqrt{2}]$ is a unique factorization domain? Give the exact relationship between the two factorizations.
15. Consider the ring $\mathbb{Z}[2 i]=\{a+2 b i \mid a, b \in \mathbb{Z}\}$, which can be regarded as a subset of $\mathbb{Z}[i]$.
(a) Determine the units of $\mathbb{Z}[2 i]$,
(b) Show that $\mathbb{Z}[2 i]$ is not a unique factorization domain by giving two appropriate factorizations of $4 \in \mathbb{Z}[2 i]$.
16. Prove by induction: 5 divides $3^{4 n}-1$ for all $n \geq 1$.

