## Review for the Final Exam in Math 222.02

1. Prove that $\sqrt{7}$ is irrational.
2. Make sure that you know how to calculate in $\mathbb{Z}, \mathbb{Z}[i], \mathbb{Z}[\sqrt{2}]$. For example: Given $-1+5 \sqrt{2}, 16+11 \sqrt{2} \in \mathbb{Z}[\sqrt{2}]$.
(a) Calculate a greatest common divisor.
(b) List all greatest common divisors.
(c) Find a Bézout-equation.
3. Show all associates of $2+3 i \in \mathbb{Z}[i]$ in the Gaussian plane.
4. Find all roots of the polynomial $f=X^{2}+X$ in $\mathbb{Z}_{10}$.
5. Let $\sigma, \tau \in S_{n}$ for some $n \geq 2$. What is the inverse of the element $\sigma^{2} \tau^{3} \sigma^{-1}$ ?
6. Prove: If $b$ is a unit of a ring $R$, then $b$ is not a zero divisor.
7. Given the polynomials $f=X^{4}+5 X^{2}+3 X+1$ and $g=X^{2}+2 X+3$ with coefficients in $\mathbb{Z}_{9}$. Find polynomials $a$ and $r$ so that $f=a g+r$ and $\operatorname{deg} r<\operatorname{deg} g$.
8. Can you find a number $a+b \sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ so that $(a+b \sqrt{2})(2-\sqrt{2})=1$ ?
9. Find $\frac{2}{5} \in \mathbb{Z}_{13}$ and $\frac{4}{9} \in \mathbb{Z}_{10}$.
10. Give an example of a ring $R$ and two units $a, b \in R$, so that $a+b$ is not a unit.
11. (a) Determine the order of 2 in $\mathbb{Z}_{17}$.
(b) Why does $\mathbb{Z}_{17} \backslash\{0\}$ together with multiplication (modulo 17) form a group?
(c) Give a subgroup of order 4.
(d) Is 2 a square in $\mathbb{Z}_{17}$ ?
(e) Is -1 a square in $\mathbb{Z}_{17}$ ?
12. Factorize into Gaussian primes:
(a) $35 i$,
(b) -31 ,
(c) $50+75 i$,
(d) $3+15 i$.
13. Consider the symmetric group $S_{6}$ and its subgroup $D_{6}$ of all symmetries of the regular hexagon.
(a) Find a subgroup of order 3 of $D_{6}$ and describe its action on the hexagon.
(b) List all flips of $D_{6}$ which have positive sign.
(c) Find the smallest subgroup of $D_{6}$ containing the rotation (123456) and (13)(46).
14. Consider the group $\mathbb{Z}_{18}$ with the addition + .
(a) Find all generators.
(b) Determine the order of the element 12 .
(c) Give a subgroup of order 6 and determine all its cosets.
15. Prove: If $G$ is a group with prime order $p=|G|$, then the only subgroups of $G$ are $\{e\}$ and $G$.
