Review for the Final Exam in Math 222.02

1. Prove that $\sqrt{7}$ is irrational.

2. Make sure that you know how to calculate in Z, Z[i], Z[√2]. For example: Given -1 + 5√2, 16 + 11√2 ∈ Z[√2].
(a) Calculate a greatest common divisor.

- (b) List all greatest common divisors.
- (c) Find a Bézout-equation.
- **3.** Show all associates of $2 + 3i \in \mathbb{Z}[i]$ in the Gaussian plane.
- 4. Find all roots of the polynomial $f = X^2 + X$ in \mathbb{Z}_{10} .
- **5.** Let $\sigma, \tau \in S_n$ for some $n \ge 2$. What is the inverse of the element $\sigma^2 \tau^3 \sigma^{-1}$?
- 6. Prove: If b is a unit of a ring R, then b is not a zero divisor.
- 7. Given the polynomials $f = X^4 + 5X^2 + 3X + 1$ and $g = X^2 + 2X + 3$ with coefficients in \mathbb{Z}_9 . Find polynomials a and r so that f = ag + r and deg $r < \deg g$.
- 8. Can you find a number $a + b\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$ so that $(a + b\sqrt{2})(2 \sqrt{2}) = 1$?
- **9.** Find $\frac{2}{5} \in \mathbb{Z}_{13}$ and $\frac{4}{9} \in \mathbb{Z}_{10}$.
- **10.** Give an example of a ring R and two units $a, b \in R$, so that a + b is not a unit.
- 11. (a) Determine the order of 2 in \mathbb{Z}_{17} .
 - (b) Why does $\mathbb{Z}_{17} \setminus \{0\}$ together with multiplication (modulo 17) form a group?
 - (c) Give a subgroup of order 4.
 - (d) Is 2 a square in \mathbb{Z}_{17} ?
 - (e) Is -1 a square in \mathbb{Z}_{17} ?

- 12. Factorize into Gaussian primes:
 - (a) 35*i*,
 - **(b)** −31,
 - (c) 50 + 75i,
 - (d) 3 + 15i.
- 13. Consider the symmetric group S_6 and its subgroup D_6 of all symmetries of the regular hexagon. (a) Find a subgroup of order 3 of D_6 and describe its action on the hexagon.
 - (b) List all flips of D_6 which have positive sign.
 - (c) Find the smallest subgroup of D_6 containing the rotation (123456) and (13)(46).
- 14. Consider the group \mathbb{Z}_{18} with the addition +.
 - (a) Find all generators.
 - (b) Determine the order of the element 12.
 - (c) Give a subgroup of order 6 and determine all its cosets.
- **15.** Prove: If G is a group with prime order p = |G|, then the only subgroups of G are $\{e\}$ and G.