Chris Bendel and Peter Cholak Math 222 - Sample Exam 1 Wednesday, February 24

Be sure to carefully write up your answers. Be sure to explain your answers.
(4 points each) Define the following terms:
a) $\sqrt[6]{4}$ (over the complex numbers).
b) The argument of a complex number z.
c) The order of an nth root of unity for a positive integer n.
d) The additive inverse of a number a in \mathbb{Z}_{n} (n a postive integer).
(2 points each) Answer True or False - no work required:
a) $\arg (1+i)=\pi / 4+2 \pi n$ for any $n \in \mathbb{Z}$.
b) For any $z \in \mathbb{C},|z|^{3}=3|z|$.
c) $3 \cdot 17 \equiv 3 \quad(\bmod 6)$.
d) The coefficient of $a^{7} b^{4}$ in $(a+b)^{11}$ is 330 .
(15 points) Find all solutions to $x^{5}-32=0$. Are these solutions constructible? Why or why not? (You do not need to simplify your answer to the form $a+b i$.)
(15 points) Find the multiplicative inverse of 14 in \mathbb{Z}_{59}.
(15 points) Prove that $n^{13}-n$ is divisible by 78 for any positive integer n.
(15 points) Exactly one of the following three problems will appear.
a) Let $\operatorname{lcm}(a, b)$ denote the least common multiple of a pair of integers a, b. Let ζ be the first nth root of unity for some positive integer n (i.e. $\zeta \neq 1$). Show that $o\left(\zeta^{k}\right)=\frac{\operatorname{lcm}(k, n)}{k}$ for $0<k<n$.
b) Let n be a positive integer and ζ be the first nth root of unity (i.e. $\zeta \neq 1)$ and let $\alpha=\zeta^{k}$ be any other nth root of unity. Prove that there exists an integer m such that $\zeta=\alpha^{m}$ if and only if k has a multiplicative inverse in \mathbb{Z}_{n}.
c) Prove that if n is an odd positive integer and ζ is any primitive nth root of unity, then so is ζ^{2}. Is this also true for n even? Why or why not?
(15 points) Exactly one of the following three problems will appear.
a) Prove that the least common multiple of any two positive integers k and m is $\frac{k m}{(k, m)}$.
b) Let $p, p_{1}, p_{2}, p_{3} \in \mathbb{Z}$ be prime numbers. Use Euclid's Lemma (Lemma 4.4) to prove that if p divides $n=p_{1} \cdot p_{2} \cdot p_{3}$, then p equals one of p_{1}, p_{2}, or p_{3}.
c) Let a and b be nonzero integers such that $g=(a, b)$. Prove that $\left(\frac{a}{g}, \frac{b}{g}\right)=1$.

