Chris Bendel and Peter Cholak Math 222 - Exam 1 Wednesday, February 24

Be sure to carefully write up your answers. Be sure to explain your answers.
(4 points each) Define the following terms:
a) $\sqrt[n]{1}$ (over the complex numbers for a positive integer n).
b) A constructible number.
c) A primitive nth root of unity for a positive integer n.
d) The multiplicative inverse of a number a in \mathbb{Z}_{n} (n a positive integer).
(2 points each) Answer True or False - no work required:
a) If $\arg (z)=\phi$, then $\arg \left(z^{2}\right)=\phi^{2}$.

Answer:

b) $|3+4 i|=5$.

Answer:

c) $5 \cdot 6 \equiv 5 \quad(\bmod 7)$.

Answer:

d) The coefficient of $x^{8} y^{2}$ in $(x+y)^{10}$ is 45 .

Answer:

(15 points) Find all solutions to $x^{6}-8=0$. Explain briefly why these solutions are constructible? (You do not need to simplify your answer to the form $a+b i$.)
(15 points) Find the multiplicative inverse of 56 in \mathbb{Z}_{67}.
(15 points) Prove that $n^{5}-n$ is divisible by 30 for any positive integer n.
(15 points) Let n be a positive integer and ζ be the first nth root of unity (i.e. $\zeta \neq 1$) and let $\alpha=\zeta^{k}$ be any other nth root of unity. Prove that there exists an integer m such that $\zeta=\alpha^{m}$ if and only if k has a multiplicative inverse in \mathbb{Z}_{n}.
(15 points) Let a and b be nonzero integers such that $g=(a, b)$. Prove that $\left(\frac{a}{g}, \frac{b}{g}\right)=1$.

