Prove that if $P(x)$ and $Q(x)$ are polynomials over a field F of degree m and n respectively then the degree of $P(x) Q(x)=m+n$ while the degree of $P(x)+Q(x)=\max (m, n)$.

Let G be a group and suppose that G satisfies the following property. whenever $b \cdot a=a \cdot c$, then $b=c$ for $a, b, c \in G$. Prove that G must be abelian.

Let $f: G \rightarrow H$ be an isomorphism of groups. Prove that $f\left(1_{G}\right)=1_{H}$.
Kernel of a homomorphism is a subgroup. Will we get to?
Let p be a prime number and G be a finite group of order p.
a) Show that G is cyclic.
b) Use part (a) to show that there is only one group of order p up to isomorphism.

How many abelian groups are there of order 24?
Let $G=\{(a) a$ $\left.a a: a \in \mathbb{R}^{*}\right\} . G$ is a group under matrix multiplication.
a) Find the identity element of this group.
b) Find the inverse of (3) 3 33 in G.

The set $G=\{5,15,25,35\}$ is a group under multiplication modulo 40 .
a) Find the identity element in G.
b) Find the inverses of the remaining elements in G.

Let G be the set of rational numbers except -1 . This forms a group under the following multiplication: $a * b \equiv a+b+a b$, where the operations on the right hand side are as usual.
a) Find the identity element in G.
b) Find the inverse of 2 in G.

