Chris Bendel and Peter Cholak Math 222 - Sample Exam 2 Wednesday, April 14

The exam will cover sections $6.1-6.3,7.1-7.3,8.2,8.4,9.1,9.2$ and will have format as outlined below.
(4 points each) Define the following terms:
a) relatively prime polynomials
b) field
c) Gauss imaginary
d) transposition
(2 points each) Answer True or False - no work required:
a) The polynomial $P(x)=2 x^{3}+x^{2}+3$ is irreducible over \mathbb{Z}_{5}.
b) $G F\left(3, x^{5}+2 x+1\right)$ contains 242 elements.
c) The negative real numbers under multiplication is a group.
d) The permutation $\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 6 & 7 & 1 & 8 & 2 & 9 & 5 & 4\end{array}\right)$ is even.

Part III: Computational Problems - there will be a few problems something like the following for a total of 45 points.

Completely factor $P(x)=x^{3}+2 x+3$ over \mathbb{Z}_{5}.
Find a greatest common divisor of $P(x)=x^{5}+4 x^{3}+3 x^{2}+4 x+1$ and $Q(x)=x^{4}+x^{3}+2 x+1$ over \mathbb{Z}_{5}.

Find the remainder when dividing x^{51} by $x+4$ over \mathbb{Z}_{7}.
For which $a \in \mathbb{Z}_{5}$ is $P(x)=x^{3}+x+a$ irreducible over \mathbb{Z}_{5} ?
Find the inverse of the element $1+2 \beta$ in $G F\left(3, x^{2}+x+2\right)$, where β is the associated Galois imaginary.

Let $f(x)=x^{3}+x+1$ and α be the associated Galois imaginary in $G F(2, f(x))$. Find all integers i such that $f\left(\alpha^{i}\right)=0$.

Find all primitive elements in $G F\left(2, x^{4}+x+1\right)$.
Let $\sigma=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 6 & 7 & 1 & 8 & 2 & 9 & 5 & 4\end{array}\right)$ and $\rho=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 1 & 9 & 8 & 7 & 6 & 5 & 4\end{array}\right)$.
a) Express both σ and τ in disjoint cycle notation and as a product of transpositions.
b) Express σ^{-1} and $\sigma \tau$ in disjoint cycle notation.
c) Find the orders and parity of σ, τ, and $\sigma \tau$.

Let $G=\mathbb{Q}^{*}$ be the nonzero rational numbers and consider the following multiplication on $G: x * y \equiv 2 x y$ where multiplication is as usual on the right hand side. This forms a group.
a) Find the identity element, 1_{G}, of G.
b) Find the inverse of 3 in G.

Consider the following hypothetical multiplication table for a group G :

G	e	a	b
e	e	a	b
a	a	e	a
b	b	a	e

The table defines a multiplication, but the nature of the table should suggest that G is in fact not a group. Which of the properties of a group fail? Which hold. Explain.

Consider the following set of matrices:

$$
G \equiv G L_{2}(\mathbb{R})=\left\{A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{R} \text { and } \operatorname{det}(A) \neq 0\right\}
$$

G is a group under matrix multiplication - called the general linear group of 2 by 2 invertible matrices over the real numbers. Why is G closed under multiplication? What is the identity element? Why? Why does each matrix have an inverse? What is the inverse of the element $\left(\begin{array}{ll}2 & 4 \\ 1 & 3\end{array}\right)$?

How many elements of order 2 are there in D_{125} ? Explain.
Part IV: Proofs - exactly two of the following problems will appear. They'll be worth 15 points each.

Let a and b be two elements of a field. Prove that $a \cdot b=0$ in F if and only if a or b is zero.

Let p be a prime number and suppose that \mathbb{Z}_{p} contains an element c which is not a cube (in \mathbb{Z}_{p}). Show that there exists a field with p^{3}-elements.

Let p be a prime number and $P(x)$ be an irreducible polynomial of degree ν over \mathbb{Z}_{p}. Suppose that n is a positive integer relatively prime to $p^{\nu}-1$. Prove that there is exactly one nth root of unity in $G F(p, P(x))$.

Let $\alpha \in G F(p, P(x))$ be primitive. Show that α^{2} is primitive if and only if $p=2$.
Let a, b, c be elements of a group G. Prove that if $a \cdot b=a \cdot c$, then $b=c$. Can we make the same conclusion if $b \cdot a=a \cdot c$? Why or why not?

Let a and b be elements of a group G. Prove that if $(a \cdot b)^{2}=a^{2} \cdot b^{2}$, then $a \cdot b=b \cdot a$.
Let G be a group. Prove that if $x^{2}=1$ for each $x \in G$, then G is abelian.
Let G be a group. Prove that if $a \cdot b=1_{G}$ for some $a, b \in G$, then $b=a^{-1}$.

