Chris Bendel and Peter Cholak Math 222 - Exam 2 Wednesday, April 14
Be sure to carefully write up your answers. Be sure to explain your answers.
(4 points each) Define the following terms:
a) irreducible polynomial.
b) $G F(p, P(x))$ where $P(x)$ is an irreducible polynomial of degree ν over \mathbb{Z}_{p}.
c) order of an element in a group.
d) primitive element in a finite field with p^{ν} elements.
(2 points each) Answer True or False - no work required:
a) The polynomial $x^{4}+2 x^{2}+1$ is irreducible over \mathbb{Z}_{3}.
b) The order the number 2 in the group $\left(\mathbb{Z}_{3},+\right)$ is 2 .
c) The set of 10 th roots of unity in \mathbb{C} is a group (under multiplication).
d) Each element $\zeta \neq 0,1$ in $G F\left(2, x^{5}+x^{2}+1\right)$ is primitive.
(10 points) Find the remainder when x^{73} is divided by $x+2$ in \mathbb{Z}_{5}.
(15 points) Consider the field $G F\left(2, x^{4}+x+1\right)$. Let β be the associated Galois imaginary. β is primitive. Why? Find the inverse of $\beta^{2}+\beta$ as a power of β.
(10 points) Let $\sigma=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 6 & 8 & 1 & 4 & 2 & 9 & 3 & 7\end{array}\right)$.
a) Write σ^{67} in disjoint cycle notation.
b) Is σ^{35} even or odd? Why?
(10 points) The set $G=\{4,8,16\}$ is a group under multiplication modulo 28.
a) Find the identity element of G.
b) Find the inverses of the remaining elements in G.
(15 points) Let p be a prime number and suppose that \mathbb{Z}_{p} contains an element c which is not a cube (in \mathbb{Z}_{p}). Show that there exists a field with p^{3}-elements.
(15 points) Let G be a group. Prove that if $x^{2}=1$ for each $x \in G$, then G is abelian.

