CIV	Chris Bendel and Peter Cholak Math 222 - Exam 2 Wednesday, April 14 Be sure to carefully write up your answers. Be sure to explain your answers
swers.	
a)	(4 points each) Define the following terms: <i>irreducible</i> polynomial.
\mathbb{Z}_p	b) $GF(p,P(x))$ where $P(x)$ is an irreducible polynomial of degree ν over .
	c) order of an element in a group.

d) primitive element in a finite field with p^{ν} elements.

- (2 points each) Answer **True** or **False** no work required: a) The polynomial $x^4 + 2x^2 + 1$ is irreducible over \mathbb{Z}_3 .

b) The order the number 2 in the group $(\mathbb{Z}_3,+)$ is 2.

c) The set of 10th roots of unity in \mathbb{C} is a group (under multiplication).

d) Each element $\zeta \neq 0, 1$ in $GF(2, x^5 + x^2 + 1)$ is primitive.

(10 points) Find the remainder when x^{73} is divided by x+2 in \mathbb{Z}_5 .

(15 points) Consider the field $GF(2, x^4 + x + 1)$. Let β be the associated Galois imaginary. β is primitive. Why? Find the inverse of $\beta^2 + \beta$ as a power of β .

(10 points) Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 6 & 8 & 1 & 4 & 2 & 9 & 3 & 7 \end{pmatrix}$.
a) Write σ^{67} in disjoint cycle notation.
b) Is σ^{35} even or odd? Why?

(10 points) The set $G=\{4,8,16\}$ is a group under multiplication modulo 28.

- a) Find the identity element of G.
- b) Find the inverses of the remaining elements in G.

(15 points) Let p be a prime number and suppose that \mathbb{Z}_p contains an element c which is not a cube (in \mathbb{Z}_p). Show that there exists a field with p^3 -elements.

(15 points) Let G be a group. Prove that if $x^2=1$ for each $x\in G$, then G is abelian.