
Math 222: Classifying Finite Groups

One of the primary problems in group theory has been (and in some sense still is) the
classification of all finite groups – i.e. What are all the finite groups? Let’s explore this
question a little. In class we have already seen one nice fact:

Theorem 1. If G is a finite group of order a prime number p, then G is cyclic and isomorphic
to Zp.

Note: For convenience, we’ll simply denote the group of integers mod n under addition,
(Zn, +), by Zn.

This theorem followed from one of the most important results of group theory:

Lagrange’s Theorem. If H is a subgroup of a finite group G, then the order of H divides
the order of G.

Another fundamental result is

Cauchy’s Theorem. (Theorem 11.8) If the order of a finite group G is divisible by a prime
p, then G has an element of order p.

This allows one to tackle groups of order 2p with p > 2. By Cauchy’s Theorem there exists
an element a ∈ G with order p and an element b ∈ G with order 2. The cyclic subgroup 〈a〉
has order p and so has index 2 in G. Hence, this is normal. Using normality and considering
the element bab−1, one can show the following:

Theorem 2. (Corollary 11.9) If p > 2 and G is a finite group of order 2p, then G is
isomorphic to either Zp or Dp.

Example 1. Hence, there are only two groups of order 6 = 2 · 3: Z6 and D3 ' S3. And
there are only two groups of order 10 = 2 · 5: Z10 and D5.

Let’s now consider abelian groups. There is a beautiful description of what all the finite
abelian groups are. To state this we need to the notion of the product of two groups – see
section 11.1. This is an easy way to build new groups from old. Suppose we have two groups
G and H. Then we get a new group G × H which is simply the set of all ordered pairs

G × H = {(g, h) : g ∈ G, h ∈ H}

with “componentwise” multiplication. That is (a, b) · (c, d) = (a · c, b · d) where the multipli-
cation on the left is in G and the multiplication on the right is in H.

Example 2. Consider the group

G = Z2 × Z3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.

For example (0, 1) + (1, 1) = (1, 2), (0, 1) + (1, 2) = (1, 3), (0, 2) + (0, 2) = (0, 1), and so on.
The identity element here is of course (0, 0). This group has order 6 and so by Theorem 2 it
must be isomorphic to either Z6 or D3. But, it’s clearly abelian and so couldn’t be the latter.
Indeed, notice that the element (1, 1) has order 6 and so G is indeed cyclic with G = 〈(1, 1)〉.

Example 2.1 Consider now the group

G′ = Z2 × Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Now, this group has order 4 and in analogy with the previous example you might guess that
G′ is ismorphic to Z4. But, being clever you quickly notice that each non-identity element
in G′ has order TWO! So, it’s in fact the Klein Four group. Hmm.... what’s going on here?



Question: What’s different in these two situations?

In the first case, we’re dealing with two different primes – 2 and 3, whereas in the second
case, we’re dealing with the same prime – 2. Indeed, the starting point for identifying all
finite abelian groups are the following two facts.

Theorem 3. Let p, q be distint prime numbers. The group Zp ×Zq is cyclic and isomorphic
to Zpq. More generally, the statement holds for any integers p and q which are relatively
prime.

Proof. Can you prove this?

Theorem 4. Let p be prime. The group Zp × Zp is NOT cyclic and hence not isomorphic
to the group Zp2 .

Proof. Can you prove this? Consider order. Is there a more general statement?

Example 3. If we consider groups of order 9 = 3 ·3, just like for order 4, we get two distinct
abelian groups: Z9 and Z3 × Z3.

Example 3.1. But, compare this to order 8 = 2 · 2 · 2. We can build up several potentially
different abelian groups:

Z8, Z4 × Z2, and Z2 × Z2 × Z2.

Are any of these the same? No. Consider the order of elements. The latter two have no
elements of order 8 and so cannot be Z8. Similarly, the last one has no elements of order 4
and so must be distinct from both the first and second group.

In the examples above, we see that when one is dealing with a product of distinct prime
numbers, there are not so many options, but when dealing with a power of a prime there are
many options. What then is true in general? The following beautiful result:

Fundamental Theorem of Finite Abelian Groups. Every finite abelian group is iso-
morphic to a product of the form

Zn1
p1
× Zn2

p2
× · · · × Znk

pk

for some collection of not necessarily distinct primes pi and positive integers ni. Moreover,
this factorization is unique except for rearrangement of the factors.

Example 4. What are all the abelian groups of order 120? To answer this, we first factor
120 into a product of primes: 120 = 23 · 3 · 5. For each distinct prime (or power thereof) we
consider all the possible abelian groups of that order:

• 8 = 23: Z8, Z4 × Z2, Z2 × Z2 × Z2

• 3: Z3

• 5: Z5

Now, the possible groups of order 120 consists of products of groups – exactly one coming
from each of the three lists. So, here there are three possible groups:

• Z8 × Z3 × Z5 ' Z120 ' Z24 × Z5 ' Z8 × Z5

• Z4 × Z2 × Z3 × Z5 ' Z4 × Z30 ' Z2 × Z60



• Z2 × Z2 × Z2 × Z3 × Z5

Example 4.1: The finite abelian groups of order 108 = 33 · 22 are

• Z27 × Z4 ' Z108

• Z27 × Z2 × Z2 ' Z54 × Z2

• Z9 × Z3 × Z4 ' Z9 × Z12 ' Z3 × Z36

• Z9 × Z3 × Z2 × Z2 ' Z9 × Z6 × Z2

• Z3 × Z3 × Z3 × Z4

• Z3 × Z3 × Z3 × Z2 × Z2

Problems: Find all the finite abelian groups of order: 64, 212, 600, 1000, and 1250.

While the classification of finite abelian groups dates back to the 1800’s a more recent and
monumental project has been the classification of finite simple groups. Recall that a group
is simple if it has no non-trivial normal subgroups. For example, for any prime p, the cyclic
group Zp is simple because it has no non-trivial subgroups period. And from our above
discsussion we see that those are the only abelian simple groups. How about non-abelian
ones? We have also seen that the alternating group A5 is simple – indeed for each n > 4,
An is simple.

The project of classifying all the simple groups began in the early 60’s (late 50’s perhaps) with
a monumental theorem by Feit and Thompson which says that any non-abelian simple group
must have even order. Throughout the 60’s and 70’s there was an amazing collaborative effort
among Group Theorists to solve this problem ... the problem was divied up into chunks and
worked on by various mathematicians. After some 10,000+ pages of published material and
20-25 years of effort, the problem was solved! There are 18 infinite families of finite simple
groups – we have noted the first two of these above. And then there are 26 other, so called
“sporadic” groups, which don’t seem to fit with anything. And that’s it!

As a further testament to the enormity of the project, lest you think you might stumble
upon these simple groups ... the largest of the sporadic groups, called the “Monster” group
has order ... hold onto your socks! ...

808, 017, 424, 794, 512, 875, 886, 459, 904, 961, 710, 757, 005, 754, 368, 000, 000, 000.

That’s more than the number of atoms in the earth! Only a mathematician could call such
a group simple.

As well as being a wonderful example of the power of collaboration, this project showed that
even mathematicians have a few skeletons in their closets. Because of the scattered nature
of the original proofs of this, two mathematicians are writing a series of books containing a
complete proof. (I believe volume 3 or 4 of a predicted 10 has just come out.) In the process
it has been discovered that things are not in fact fully complete. One mathematician whose
task it was to prove some piece of the puzzle never published his work and so others have
had to come along and fill in some gaps in his work.


