
Math 222: A Brief Introduction to Rings

We have discussed two fundamental algebraic structures: fields and groups. A field is a world with
two operations (addition and multiplication) which satisfy all the properties we’re used to. A group
has only one operation which need not be commutative. Somewhere in between these two worlds
is a third fundamental structure: a ring.

Definition. A ring is a set R with two operations (+, ·) such that R forms an abelian group under
addition and the multiplication is associative and distributes over addition. More precisely, for all
a, b, c ∈ R, the following must hold:

(1) a + b = b + a.

(2) (a + b) + c = a + (b + c).

(3) There is an element 0 in R such that a + 0 = a.

(4) There is an element −a in R such that a + (−a) = 0.

(5) a(bc) = (ab)c.

(6) a(b + c) = ab + ac and (b + c)a = ba + ca.

Clearly any field satisfies all these properties and so is a ring. But, let’s look at what properties are
NOT assumed for a ring:

• The multiplication is not assumed to be commutative. If it is, the ring is said to be com-
mutative. Note: We do not say that a ring is abelian – that terminology is reserved for
groups.

• The ring need not have a 1, that is a multiplicative identity element. If it does, we say the
ring has a unity or has an identity or has a one or the ring is unital. If a ring does have a
unity, the unity is unique.

• Even if the ring does have a unity, there is no assumption that multiplicative inverses exist.
An element of a unital ring which does admit a multiplicative inverse is called a unit. If they
exist, inverses are also unique in a ring. Further, the set of units in a ring forms a group under
multiplication – the unit group of the ring.

In this language, a field is a commutative ring with unity in which every non-zero element is a unit.
Besides fields, we have already come across many rings in this course:

Example 1. The integers Z under usual addition and multiplication is a commutative ring with
unity – the unity being the number 1. Of course the only units are ±1.

Example 2. For any positive integer n > 0, the integers mod n, Zn, is a commutative ring with
unity. We have seen that the units are those elements which are relatively prime to n. The unit
group is denoted U(n). Of course, if n happens to be a prime, then we have a field.

Example 2.1 Consider Z10. The group of units is U(10) = {1, 3, 7, 9}. Which group of order 4
is this isomorphic to? We have already noticed something “bad” which can happen in rings: both
2 and 5 are non-zero elements of Z10 and yet 2 · 5 = 0 mod 10. The numbers 2 and 5 are called
zero-divisors. In a field zero is the only zero-divisor. A commutative ring with unity which has NO
non-zero zero-divisors is called an integral domain. For example, Z is an integral domain as is any
field.



Example 3. Given any ring R, the set of polynomials with coefficients in R:

R[x] = {anx
n + an−1x

n−1 + · · ·+ a1x + a0 : ai ∈ R}

under polynomial addition and multiplication is a commutative ring with unity (the constant poly-
nomial 1). We have already observed that most polynomials do not have an inverse. If R has no
(non-zero) zero-divisors, then the polynomial ring over R, R[x], has no (non-zero) zero-divisors.

Example 3.1. What are the units in R[x]? Z[x]?

Example 4. The set of even integers 2Z ⊂ Z is a ring. Indeed, it is a subring of Z and is of course
commutative. Does it have a unity?

Example 5. An important family of non-commutative rings are matrix rings. For example, consider
the set of all 2 × 2 matrices with real entries:

M2(R) =
{(

a b
c d

)
: a, b, c, d ∈ R

}
.

This is a ring under matrix addition and multiplication. It has an identity – what is it? But, it is
not commutative. Can you give an example? What is the group of units? Note: One can consider
matrices of arbitrary size and having entries in any field or ring.

Definition. Two rings R and S are said to be isomorphic if there is a map f : R → S satisfying
the following three properties:

• f is one-to-one: For a, b ∈ R, if f(a) = f(b), then a = b.

• f is onto: For each b ∈ S, there is a ∈ R with f(a) = b.

• f is a homomorphism of rings: For all a, b ∈ R, f(a+b) = f(a)+f(b) and f(a ·b) = f(a) ·f(b).

Example 6. Consider the fields F = GF (3, x2 + x + 2) with Galois imaginary α and F ′ =
GF (3, x2 +2x+1) with Galois imaginary β. Both α and β are primitive elements in their respective
fields and the map f : F → F ′ by f(αn) = βn for each 0 ≤ n ≤ 8 is an isomorphism of rings. Or in
this case we would say an isomorphism of fields.

Example 6.1 The map f : Z → 3Z by f(x) = 3x is an isomorphism of groups (under the addition
structure) but is NOT an isomorphism of rings since f(2 · 2) 6= f(2) · f(2).

Definition. A subring S ⊂ R a ring is said to be a (two-sided) ideal if for every s ∈ S and r ∈ R,
both rs and sr are in S.

Example 7. The subring 2Z ⊂ Z is an ideal. For an element of 2Z is even and multiplying by any
other integer, it remains even. Moreover, for any postive integer n, the subset nZ ⊂ Z is an ideal.

Example 8. Consider the polynomial ring R[x] and let S be the subset of all polynomials with
zero constant term. This is a subring and in fact an ideal. It is usually denoted 〈x〉 and called the
ideal generated by x. The point being that every polynomial with zero constant term admits x as
a factor; in other words, is a multiple of x.

Example 8.1. Consider the ideal 〈x2〉 ⊂ R[x]. Can you figure out what this set is? In particular,
which of the following polynomials lie in 〈x2〉:

x5 + 2x3 − x2, x2 + 2, 5x3 + x, 10x35 − x16 ?

This notion of an ideal allows one to form so called factor rings by “dividing” in some sense a ring
by an ideal. This is similar to the notion of a quotient group.


