Chris Bendel and Peter Cholak Math 222 - Final Thursday, May 6 (4 points each) Define the following terms:
a) A subgroup.
b) The modulus of a complex number z.
c) A polynomial being solvable by radicals.
d) An odd permutation.
e) A cyclic group.
(2 points each) Answer True or False - no work required:
a) Every degree 3 polynomial over \mathbb{Q} has a nonconstructible zero.
b) There is a degree 5 polynomial over \mathbb{Q} which is not solvable by radicals.
c) Let H be a subgroup of the group G and let h be an element of H. Then the group $<h>$ is contained in H.
d) The order of $\binom{1}{2}$ is even in S_{3}.
e) The quaternions are isomorphic to a subgroup of $\left(\mathbb{Z}_{16},+\right)$.
f) Let $f:(\mathbb{C},+) \rightarrow(\mathbb{C},+)$ by $f(a+b i)=a-b i . f$ is an isomorphism.
(10 points) Find all the zeros of $x^{5}+32$ in the complex numbers.
(10 points) Find all the primitive 6 th roots of unity in \mathbb{Z}_{7}.
(10 points) Does S_{8} have a cyclic subgroup of order $3,5,7,11,13,15$? If so find such a subgroup.
(10 points) Are D_{6} and A_{4} isomorphic groups? Why or why not?
(10 points) Use the Euclidean algorithm to find $d=\operatorname{gcd}(304,399)$ and then find integers x and y such that $d=304 x+399 y$.
(10 points) Construct the cyclic table for $G F\left(3, x^{2}+2 x+2\right)$.
(10 points) Given that $3 i$ is a zero of $f(x)=x^{3}-6 i x^{2}-11 x+6 i$ over \mathbb{C}. Find all the zeros of $f(x)$ in \mathbb{C}.
(15 points) Let p be a prime number and $P(x)$ be an irreducible polynomial of degree ν over \mathbb{Z}_{p}. Suppose that n is a positive integer relatively prime to $p^{\nu}-1$. Prove that there is exactly one nth root of unity in $G F(p, P(x))$.
(15 points) Let f be a function from a group $(G, *)$ to a group $(H, *)$ such that $f(a * b)=f(a) * f(b)$. The kernel of f is $\left\{g \in G: f(g)=1_{H}\right\}$. Show the kernel of f is a subgroup of G.
(15 points) Let p be a prime number and G be a finite group of order p.
a) Show that G is cyclic.
b) Use part (a) to show that there is only one group of order p up to isomorphism.

