Chris Bendel and Peter Cholak Math 222 - Final Thursday, May 6 (4 points each) **Define** the following terms:

a) A subgroup.

b) The *modulus* of a complex number z.

c) A polynomial being *solvable by radicals*.

d) An odd permutation.

e) A cyclic group.

- (2 points each) Answer True or False no work required:
- a) Every degree 3 polynomial over $\mathbb Q$ has a nonconstructible zero.

b) There is a degree 5 polynomial over $\mathbb Q$ which is not solvable by radicals.

c) Let H be a subgroup of the group G and let h be an element of H. Then the group < h > is contained in H.

d) The order of $(1 \ 2 \ 3)$ is even in S_3 .

e) The quaternions are isomorphic to a subgroup of $(\mathbb{Z}_{16}, +)$.

f) Let $f: (\mathbb{C}, +) \to (\mathbb{C}, +)$ by f(a + bi) = a - bi. f is an isomorphism.

(10 points) Find all the zeros of $x^5 + 32$ in the complex numbers.

(10 points) Find all the primitive 6th roots of unity in \mathbb{Z}_7 .

(10 points) Does S_8 have a cyclic subgroup of order 3, 5, 7, 11, 13, 15? If so find such a subgroup.

(10 points) Are D_6 and A_4 isomorphic groups? Why or why not?

(10 points) Use the Euclidean algorithm to find $d = \gcd(304, 399)$ and then find integers x and y such that d = 304x + 399y.

(10 points) Construct the cyclic table for $GF(3, x^2 + 2x + 2)$.

(10 points) Given that 3i is a zero of $f(x) = x^3 - 6ix^2 - 11x + 6i$ over \mathbb{C} . Find all the zeros of f(x) in \mathbb{C} . (15 points) Let p be a prime number and P(x) be an irreducible polynomial of degree ν over \mathbb{Z}_p . Suppose that n is a positive integer relatively prime to $p^{\nu} - 1$. Prove that there is exactly one nth root of unity in GF(p, P(x)).

(15 points) Let f be a function from a group (G, *) to a group (H, *) such that f(a * b) = f(a) * f(b). The kernel of f is $\{g \in G : f(g) = 1_H\}$. Show the kernel of f is a subgroup of G.

(15 points) Let p be a prime number and G be a finite group of order p. a) Show that G is cyclic.

b) Use part (a) to show that there is only one group of order p up to isomorphism.