Chris Bendel and Peter Cholak Math 222 Wednesday January 20
Be sure to carefully write up your answers. It is suggested that you first write out a draft of your proposed questions and then carefully rewrite that draft to get your final version. You do not have to write the answers on this sheet of paper.

In the "real" world, we are used to the fact that a product of two non-zero numbers is again non-zero. We will later see that this fact is not true in all worlds. Show that the complex numbers do behave normally. Precisely, Let z and w be two arbitrary complex numbers and suppose that the product $z w=0$. Show that at least one of z or w must be zero.

Show $(1)(2)(3)+(2)(3)(4)+(3)(4)(5)+\ldots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$.
The Fibonacci numbers are $1,1,2,3,5,8,13,21,34, \ldots$ In general, the Fibonacci numbers are defined by $f_{1}=1, f_{2}=1$, and $f_{n+2}=f_{n+1}+f_{n}$ for $n=$ $1,2,3, \ldots$. Prove that the nth Fibonacci number f_{n} satisfies $f_{n}<2^{n}$. Hint: Use the "second" version of induction and you will have to prove two starting cases.

