Chris Bendel and Peter Cholak Math 222 Wednesday, February 17
Be sure to carefully write up your answers. It is suggested that you first write out a draft of your proposed questions and then carefully rewrite that draft to get your final version. You do not have to write the answers on this sheet of paper.

Find the multiplicative inverse of 56 in \mathbb{Z}_{61}.
Prove that if p is a prime and $\alpha, \beta \in \sqrt[p]{1}$ and $\alpha \neq 1$ then there exists an integer m such that $\alpha^{m}=\beta$. (Hints: First, write $\alpha=\zeta^{k}$ and $\beta=\zeta^{r}$ where ζ is the first p th roof of unity. Second, do k and r have multiplicative inverses in \mathbb{Z}_{p} ?)

Find the coeffieient of the term $x^{13} y^{4}$ in $(x+y)^{17}$. Is this number divisible by 17 ?

