Peter Cholak and Juan Migliore Math 222 - Sample Exam 1 Friday, February 23

The exam will cover everything we have covered in class except the general solutions of a cubic, and will have format as outlined below.
(5 parts at 4 points each) Define the following terms:
a) $\sqrt[6]{4}$ (over the complex numbers).
b) The argument of a complex number $z$.
c) The order of an $n$th root of unity for a positive integer $n$.
d) The additive inverse of a number $a$ in $\mathbb{Z}_{n}$ ( $n$ a positive integer).
e) Constructible.
(5 parts at 2 points each) Answer True or False - no work required:
a) $\arg (1+i)=\pi / 4+2 \pi n$ for any $n \in \mathbb{Z}$.
b) For any $z \in \mathbb{C},|z|^{3}=3|z|$.
c) $3 \cdot 17 \equiv 3 \quad(\bmod 6)$.
d) The coefficient of $a^{7} b^{4}$ in $(a+b)^{11}$ is 330 .
e) the possible orders of elements in $\mathbb{Z}_{7}$ are $1,2,3,4,6$.

Part III: Computational Problems - there will be four problems something like the following for a total of 40 points.

Find all solutions to $x^{5}-32=0$. Are these solutions constructible? Why or why not?
(You do not need to simplify your answer to the form $a+b i$.)
Find the multiplicative inverse of 14 in $\mathbb{Z}_{59}$.
Prove that $n^{13}-n$ is divisible by 78 for any positive integer $n$.
Does $266 x+361 y=57$ have integer solutions? If so find them. It not, why not? (You must use the Euclidean algorithm as discussed in class.)

Find all roots of $x^{4^{666666}}+x^{2}+3$ in $\mathbb{Z}_{5}$. Find all the primitive elements in $\mathbb{Z}_{19}$
Part IV: Proofs - exactly two of the following problems will appear on the exam. They'll be worth 15 points each. Remember that " $a \equiv_{n} b$ " is another way of writing " $a \equiv b(\bmod n)$ ".

Show $1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots+n(n+1)=\frac{n(n+1)(n+2)}{3}$.
The least common multiple of $x$ and $y$ is the least positive number which is a multiple of both $x$ and $y$. Prove that the least common multiple of any two positive integers $k$ and $m$ is $\frac{k m}{(k, m)}$.

Let $a$ and $b$ be nonzero integers such that $g=(a, b)$. Prove that $\left(\frac{a}{g}, \frac{b}{g}\right)=1$.
For any prime $p$, if $a^{p} \equiv_{p} b^{p}$ then $a^{p} \equiv_{p^{2}} b^{p}$. (Hint: use Proposition 5.3. )
Let $m, n$ and $k$ be integers such that $(m, n)=1$ and both $m$ and $n$ divide $k$. Then prove that the product $m n$ divides $k$.

Let $p$ be prime. Show every imaginary (complex and not real) $p$ th root of unity is a primitive $p$ th root of unity.

