Peter Cholak and Juan Migliore Math 222 - Exam 1 Wednesday, February 28
Except where noted, be sure to show all your work.
(4 points each for a total of 20 points) Define the following terms:
a) $\sqrt[n]{z}$ over the complex numbers.
b) A primitive complex nth root of unity.
c) m and n are relatively prime.
d) The multiplicative inverse of a nonzero number a in \mathbb{Z}_{p} (p a prime).
e) An equation $a_{0} x^{n}+a_{1} x^{n-1}+\ldots a_{n-1} x+a_{n}=0$ is solvable by radicals (or algebraically resolvable) if ...
(2 points each for a total of 10 points) Answer True or False - no work required: a) the possible orders of elements in \mathbb{Z}_{19} are 1 and 19 .
b) 4 is the multuplicative inverse of 3 in \mathbb{Z}_{11}.
c) The coefficient of $a^{6} b^{8}$ in $\left(a^{2}-2 b\right)^{11}$ is divisible by 11 .
d) 3 has a multuplicative inverse in \mathbb{Z}_{18}.
e) 3 is an primitive element of \mathbb{Z}_{13}.
(10 points) Find all complex solutions to $x^{6}-4 x^{3}+3=0$. Which of these solutions are constructible? Why or why not? (You may use the first third root of unity, ω, in your answer.)
(10 points) Find the multiplicative inverse of 23 in \mathbb{Z}_{31}.
(10 points) Show that for all odd $k, n^{k}-n$ is divisible by 3 .
(10 points) It happens to be true that 1997 and 1999 are both prime numbers (you don't have to check this). Explain why the polynomial $x^{1997}-1$ has no roots in \mathbb{Z}_{1999} other than $x=1$. (Hint think about the order of the root.)
(15 points) Let a and b be nonzero integers such that $g=(a, b)$. Prove that $\left(\frac{a}{g}, \frac{b}{g}\right)=1$.
(15 points) For any prime p, if $a^{p} \equiv_{p} b^{p}$ then $a^{p} \equiv_{p^{2}} b^{p}$. (Hint: use Proposition 5.3.)

