Peter Cholak and Juan Migliore Math 222 - Exam 1 Wednesday, February 28
Except where noted, be sure to show all your work.
(4 points each for a total of 20 points) Define the following terms:
a) $\sqrt[n]{z}$ over the complex numbers.
$\sqrt[n]{z}$ over the complex numbers is the set of all the complex numbers x with $x^{n}=z$.
b) A primitive complex nth root of unity.

A complex root of unity whose order is n.
c) m and n are relatively prime.

The integers m and n are relatively prime if their greatest common divisor is 1 .
d) The multiplicative inverse of a nonzero number a in \mathbb{Z}_{p} (p a prime).

The multiplicative inverse of a nonzero number a in \mathbb{Z}_{p} is the number b in \mathbb{Z}_{p} with $a b \equiv b a \equiv 1$ modulo p.
e) An equation $a_{0} x^{n}+a_{1} x^{n-1}+\ldots a_{n-1} x+a_{n}=0$ is solvable by radicals (or algebraically resolvable) if ...
each of its root has an algebraic expression in the coefficients $\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$.
(2 points each for a total of 10 points) Answer True or False - no work required:
a) the possible orders of elements in \mathbb{Z}_{19} are 1 and 19.

Answer: False. The possible orders of elements in \mathbb{Z}_{17} are all the positive divisors of $18=19-1$. They are just $1,2,3,6,9,18$.
b) 4 is the multuplicative inverse of 3 in \mathbb{Z}_{11}.

Answer: True. $4 \times 3=12 \equiv_{11} 1$.
c) The coefficient of $a^{6} b^{8}$ in $\left(a^{2}-2 b\right)^{11}$ is divisible by 11 .

Answer: True. The coefficient of $a^{6} b^{8}$ in $\left(a^{2}-2 b\right)^{11}$ is $\binom{11}{3}(-2)^{8}=\frac{11!}{(3!)(8!)}(-2)^{8}$, which is divisible by 11 .
d) 3 has a multuplicative inverse in \mathbb{Z}_{18}.

Answer: False. The gcd of 3 and 18 is 3 . Since 3 and 18 are not relatively prime, 3 does not have a multuplicative inverse in \mathbb{Z}_{18}.
e) 3 is an primitive element of \mathbb{Z}_{13}.

Answer: False. The order of 3 is 3 (since $3^{3}=27 \equiv_{13} 1$), not 12 .
(10 points) Find all complex solutions to $x^{6}-4 x^{3}+3=0$. Which of these solutions are
(10 points) Show that for all odd $k, n^{k}-n$ is divisible by 3 .
Proof. It is enough to show that $n^{k}-n \equiv_{3} 0$. If $n \equiv_{3} 0$ then clearly $n^{k}-n \equiv_{3} 0$. So we can assume $n \not \equiv_{3} 0$. Now we will use the fact that if $n \not \equiv_{3} 0$ then $n^{2} \equiv_{3} 1$. Let $k=2 m+1$. Then $n^{k}-n=n^{2 m+1}-n=n\left(n^{2}\right)^{m}-n \equiv_{3} n(1)^{m}-n=n-n=0$. So in either case, $n^{k}-n \equiv_{3} 0$.
(10 points) It happens to be true that 1997 and 1999 are both prime numbers (you don't have to check this). Explain why the polynomial $x^{1997}-1$ has no roots in \mathbb{Z}_{1999} other than $x=1$. (Hint think about the order of the root.)

Solution. If there were such a root, its order would be exactly 1997 since 1997 has no divisors other than itself and 1 . But any element of \mathbb{Z}_{1999} satisfies the equation $x^{1998}-1 \equiv_{1999} 0$, so its order divides 1998. Clearly 1997 does not divide 1998.
(15 points) Let a and b be nonzero integers such that $g=(a, b)$. Prove that $\left(\frac{a}{g}, \frac{b}{g}\right)=1$.
Proof. Let $d=\left(\frac{a}{g}, \frac{b}{g}\right)$. Then $\frac{a}{g}=d h$ and $\frac{b}{g}=d k$ for some $h, k \in \mathbb{Z}$. Then $a=g d h$ and $b=g d k$. Hence $g d$ is a common divisor of a and b. Since g is the greatest common divisor of a and b, we have $g d \leq g$. Both d and g are positive integers, forcing $d=1$.
(15 points) For any prime p, if $a^{p} \equiv_{p} b^{p}$ then $a^{p} \equiv_{p^{2}} b^{p}$. (Hint: use Proposition 5.3.)
Proof. Suppose $a^{p} \equiv_{p} b^{p}$. By Fermat's theorem, $a \equiv_{p} a^{p} \equiv_{p} b^{p} \equiv_{p} b$. Hence as integers we have $a=b+k p$ for some integer k. This means that

$$
a^{p}=(b+k p)^{p}=b^{p}+\binom{p}{1} b^{p-1}(k p)+\binom{p}{2} b^{p-2}(k p)^{2}+\cdots .
$$

Since $\binom{p}{1}=p$, the second term is $k b^{p-1} p^{2}$, which is divisible by p^{2}. All terms after that are of the form $\binom{p}{i} b^{p-i}(k p)^{i}$ for $i \geq 2$, so they are all divisible by p^{2} as well. Hence $a^{p}-b^{p}$ is divisible by p^{2}, so $a^{p} \equiv{ }_{p^{2}} b^{p}$.

