Peter Cholak and Juan Migliore Math 222 - Exam 2 Wednesday, April 25 Except where noted, be sure to show all your work.
(4 points each for a total of 20 points) Define the following terms:
a) irreducible polynomial.
b) $G F(p, P(x))$, where $P(x)$ is irreducible and $p$ is prime.
c) an even permutation.
d) a group.
e) The symmetric group $S_{n}$.
(2 points each) Answer True or False - no work required:
a) The dihedral group $D_{4}$ is not abelian.
b) The order of $\left(\mathbb{Z}_{n},+\right)$ is $n$.
c) The set of primitive 8th roots of unity in $\mathbb{Z}_{17}$ is a group (under multiplication).
d) Let $p$ be a prime number. The multiplicative group $\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right)$ has at least one element of order $p$. (Notice this says $p$ and not $p-1$.)
e) Let $p$ be a prime number and let $P(x)$ be a polynomial of degree $d$ that is irreducible over $\mathbb{Z}_{p}$. Let $G=(G F(p, P(x)) \backslash\{0\}, \cdot)$, the multiplicative group of $G F(p, P(x))$. Then there must exist an element $x$ of $G$ satisfying $|G|=o(x)$.
(15 points) Work over $\mathbb{Z}_{5}$. For each $a \in \mathbb{Z}_{5}$, state whether $x^{2}-a$ is irreducible and if not factor $x^{2}-a$ into irreducible factors.
(10 points) Consider the Galois field $F=G F(11, x-1)$.
a. How many elements does $F$ have?
b. Find one primitive element of $F$.
c. In terms of powers of the element you found in part (b), find all primitive elements of $F$.
(10 points) Consider the permutation

$$
\sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 5 & 1 & 4 & 2
\end{array}\right)
$$

a. Write $\sigma$ as a product of disjoint cycles.
b. Write $\sigma$ as a product of 3-cycles.
c. What is $\sigma^{1234567}$ ?
(15 points) Consider the dihedral group $D_{3}$ (the symmetries of an equilateral triangle).
a. What is the order of $D_{3}$ ?
b. Let $R$ denote clockwise rotation of 120 degrees and let $F$ denote a flip about the vertical axis. Describe all the elements of $D_{3}$ and write them down in terms of $R, F$ and the identity.
c. For each integer $k$ between 1 and 6 (inclusive) list the elements of $D_{3}$ of order $k$, or else state that no such element exists. order 1:
order 2:
order 3:
order 4:
order 5:
order 6:
(10 points) Let $a$ and $b$ be two elements of a field. Prove that $a \cdot b=0$ in $F$ if and only if $a$ or $b$ is zero.
(10 points) Let $p$ be a prime number and suppose that $\mathbb{Z}_{p}$ contains an element $c$ which is not a cube (in $\mathbb{Z}_{p}$ ). Show that there exists a field with exactly $p^{3}$ elements.

