Peter Cholak and Juan Migliore Math 222 - Exam 2 Wednesday, April 25

Except where noted, be sure to show all your work.

(4 points each for a total of 20 points) Define the following terms:
a) irreducible polynomial.

An irreducible polynomial is a polynomial f which cannot be factored as $f=g h$ where g and h are polynomials and $0<\operatorname{deg}(g)<\operatorname{deg}(f)$.
b) $G F(p, P(x))$, where $P(x)$ is irreducible and p is prime.

Let v be the degree of $P(x)$ and α be a Galois imaginary of $P(x)$. Then $G F(p, P(x))$ is the Galois field consisting of all the elements of the form $a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+\cdots+a_{v-1} \alpha^{v-1}$ with $a_{i} \in \mathbb{Z}_{p}$, whose addition and multiplication are defined as those for polynomials in one variable modulo the relation $P(\alpha)=0$.
c) an even permutation.

An even permutation is a permutation which can be written as a product of even number of transpositions.
d) a group.

A group is a non-empty set G with a binary operation • on its elements satisfying:
(1) $a \cdot b \in G$ for any $a, b \in G$.
(2) There is $1_{G} \in G$ such that $a \cdot 1_{G}=1_{G} \cdot a=a$ for $a \in G$.
(3) $(a \cdot b) \cdot c=a \cdot(b \cdot c)$ for $a, b, c \in G$.
(4) For every $a \in G$, there is $a^{-1} \in G$ such that $a \cdot a^{-1}=a^{-1} \cdot a=1_{G}\left(a^{-1}\right.$ is written as $a^{\#}$ by the book).
e) The symmetric group S_{n}.

The symmetric group S_{n} is a permutation group consisting of all the permutations on the set $\{1,2, \cdots, n\}$, where the binary operation for the group is composition of permutations.
(2 points each) Answer True or False - no work required:
a) The dihedral group D_{4} is not abelian.

True.
b) The order of $\left(\mathbb{Z}_{n},+\right)$ is n.

True. $\mathbb{Z}_{n}=\{0,1,2, \cdots, n-1\}$, containing exactly n elements.
c) The set of primitive 8th roots of unity in \mathbb{Z}_{17} is a group (under multiplication).

False. This set contains no identity element. Also, it is not closed under the multiplication.
d) Let p be a prime number. The multiplicative group $\left(\mathbb{Z}_{p} \backslash\{0\}, \cdot\right)$ has at least one element of order p. (Notice this says p and not $p-1$.)

False. Fermat's theorem says that $x^{p} \equiv_{p} x$ for all $x \in \mathbb{Z}_{p}$, so the only candidate is $x=1$. But 1 has order 1.
e) Let p be a prime number and let $P(x)$ be a polynomial of degree d that is irreducible over \mathbb{Z}_{p}. Let $G=(G F(p, P(x)) \backslash\{0\}, \cdot)$, the multiplicative group of $G F(p, P(x))$. Then there must exist an element x of G satisfying $|G|=o(x)$.

True since every Galois field contains a primitive element.
(15 points) Work over \mathbb{Z}_{5}. For each $a \in \mathbb{Z}_{5}$, state whether $x^{2}-a$ is irreducible and if not factor $x^{2}-a$ into irreducible factors.

- $a=0: x^{2}-0=(x)(x)$.
- $a=1: x^{2}-1=(x+1)(x+4)=(x+1)(x-1)$.
- $a=2: x^{2}-2$ is irreducible.
- $a=3: x^{2}-3$ is irreducible.
- $a=4: x^{2}-4=(x-2)(x-3)=(x+3)(x+2)$.
a. Write σ as a product of disjoint cycles.
b. Write σ as a product of 3-cycles.
c. What is $\sigma^{1234567}$?
a. $\sigma=(13)(25)$
b. $\sigma=\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}3 & 5\end{array}\right)$
c. The order of σ is 2 and $1,234,567$ is odd, so $\sigma^{1234567}=\sigma$.
(15 points) Consider the dihedral group D_{3} (the symmetries of an equilateral triangle).
a. What is the order of D_{3} ?
b. Let R denote clockwise rotation of 120 degrees and let F denote a flip about the vertical axis. Describe all the elements of D_{3} and write them down in terms of R, F and the identity.
c. For each integer k between 1 and 6 (inclusive) list the elements of D_{3} of order k, or else state that no such element exists. order 1:
order 2 :
order 3:
order 4:
order 5:
order 6:
a. 6
b. identity, $R, R^{2}, F, R F, R^{2} F$.
c. Order 1: identity. Order 2: $F, R F, R^{2} F$. Order 3: R, R^{2}. No others exist.
(10 points) Let a and b be two elements of a field. Prove that $a \cdot b=0$ in F if and only if a or b is zero.

Proof. (\Leftarrow) is clear.
(\Rightarrow) If $a=0$ then we are done. If $a \neq 0$ then $b=1 \cdot b=\left(a^{-1} a\right) b=a^{-1}(a b)=a^{-1} 0=0$.
(10 points) Let p be a prime number and suppose that \mathbb{Z}_{p} contains an element c which is not a cube (in \mathbb{Z}_{p}). Show that there exists a field with exactly p^{3} elements.

Proof. Let $P(x)=x^{3}-c$. Since c is not a cube in \mathbb{Z}_{p}, the cubic polynomial $P(x)$ is irreducible over \mathbb{Z}_{p}. The Galois field $\operatorname{GF}(p, P(x))$ contains exactly p^{3} elements.

