Peter Cholak and Juan Migliore Math 222 - Final Monday, May 7 (4 points each - 20 points total) Define the following terms:

A primitive element of the Galois field $G F(p, P(x))$. The index of a subgroup H of a finite group G. A polynomial being solvable by radicals.

A field. (You can assume the definition of a ring.) The order of an element g in a group G.
(2 points each - 20 points total) Answer True or False - no work required: Every degree 3 polynomial over \mathbb{Q} has a nonconstructible zero. There is
a degree 5 polynomial over \mathbb{Q} which is not solvable by radicals. The set
of 2×2 matrices over the reals is an unital commutative ring. \mathbb{Z}_{6} is a
commutative ring but not an integral domain. There exists a field with 32
elements. If G is a group and H is a subgroup, then the identity element
1_{G} is an element of every coset of $H . \quad\left(\mathbb{Z}_{5},+\right)$ is a subgroup of $(\mathbb{Z},+)$. The
order of (123) is even in S_{3}. Every group of order 5 is cyclic.

Let H be a subgroup of the group G and let h be an element of H. Then the group $<h>$ is contained in H.
(10 points) Find all the zeros of the polynomial $x^{5}\left(x^{3}-4\right)-\left(x^{3}-4\right)$ in the complex numbers. Which of these solutions are not constructible? Why?
(15 points) Use the Euclidean algorithm to find $d=\operatorname{gcd}(304,399)$ and then find integers x and y such that $d=304 x+399 y$.
(10 points) Given that $3 i$ is a zero of $f(x)=x^{3}-6 i x^{2}-11 x+6 i$ over \mathbb{C}, find all the zeros of $f(x)$ in \mathbb{C}.
(15 points) Construct the cyclic table for $G F\left(3, x^{2}+2 x+2\right)$.
(10 points) Does S_{8} have a cyclic subgroup of order 5? 11? 15? In each case, if so find such a subgroup. If not, explain why not.
(10 points) (a). Write down all the elements of A_{4} in disjoint cycle notation.
(b). Find all the cosets of $\{i d,(13)(24)\}$ in A_{4}.
(10 points) Find all subgroups of D_{3}.
(10 points) Let $F=G F(p, P(x))$ where $P(x)$ is irreducible over \mathbb{Z}_{p}. Show that for any a in F there is at most one p th root of a.
(10 points) Let R be a commutative ring with unity and let $U(R)$ denote the set of units of R. Show that $U(R)$ is a group under the multipliciation of R. (This group is called the group of units of R.)
(10 points) Show that every finite cyclic group is abelian (i.e. is commutative)

