Peter Cholak and Juan Migliore Math 222 Wednesday, February 7
Be sure to carefully write up your answers. It is suggested that you first write out a draft of your proposed questions and then carefully rewrite that draft to get your final version. You do not have to write the answers on this sheet of paper.

Section 2.3: Problem 18: Explain why the solutions of the simultaneous equations $x^{8}+y^{8}=a$ and $x^{8} y^{8}=b$ have degree 2 algebraic expressions in $\{a, b\}$. Hint: Use Proposition 1.1.

Solution. Let $w=x^{8}$ and $z=y^{8}$. Then w and z are the solutions of the quadratic equation $X^{2}-a X+b=0$ (see Proposition 1.1). So both w and z have degree 2 algebraic expressions in $\{a, b\}$. On the other hand, $x \in \sqrt{\sqrt{\sqrt{w}}}$. So x has a degree 2 algebraic expression in $\{w\}$. Also, y has a degree 2 algebraic expression in $\{z\}$. This shows that the solutions of the above simultaneous equations have degree 2 algebraic expressions in $\{a, b\}$.

Show all the solutions of $x^{6}+9 x^{3}+8=0$ are constructible. Hint: Solve it.
Solution. By the factorization, the equation becomes

$$
\left(x^{3}+1\right)\left(x^{3}+8\right)=0
$$

or further becomes

$$
(x+1)\left(x^{2}-x+1\right)(x+2)\left(x^{2}-2 x+4\right)=0
$$

The solutions of this equation (hence of the original equation) are $-1,-2, \frac{1 \pm \sqrt{3} i}{2}, 1 \pm$ $\sqrt{3} i$. All of them have degree 2 algebraic expressions in the integers and so they are constructible.

Show that a regular 30-gon is constructible. Hint: Make use of the angles in a regular 5-gon and a regular 6-gon, which are both constructible.

Solution. Note that a regular n-gon is constructible if and only if the complex number
$\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}$ is constructible, and if and only if an angle of $\frac{2 \pi}{n}$ is constructible. So we need only show the constructibility of the angle of $\frac{2 \pi}{30}$. Since the angles in a regular 5-gon and a regular 6-gon are both constructible, the complex numbers $x=\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}$ and $y=\cos \frac{2 \pi}{6}+i \sin \frac{2 \pi}{6}$ are both constructible. So

$$
z=\frac{y}{x}=\cos \left(\frac{2 \pi}{5}-\frac{2 \pi}{6}\right)+i \sin \left(\frac{2 \pi}{5}-\frac{2 \pi}{6}\right)=\cos \frac{2 \pi}{30}+i \sin \frac{2 \pi}{30}
$$

is also constructible. This implies that an angle of $\frac{2 \pi}{30}$ is constructible, and hence a regular 30 -gon is constructible.

Section 2.5: Problem 16. Prove that if n is a positive odd integer and ζ is a primitive nth root of unity, then so is ζ^{2}. Is this also true for even n ? Justify your answer.

Solution. If ζ is a primitive nth root of unity then we have $o(\zeta)=n, \zeta^{n}=1$ and $\zeta^{m} \neq 1$ for $1 \leq m<n$. Suppose ζ^{2} were not a primitive nth root of unity, so $\left(\zeta^{2}\right)^{m}=\zeta^{2 m}=1$ for some $m<n$. By Proposition 2.14, it follows that $2 m$ is a multiple of $o(\zeta)=n$. But since $m<n$, we get $2 m<2 n$ so the only way a multiple of n could equal $2 m$ is if $2 m=n$. But this is impossible since n is odd.

This is not true for even n. For example, i is a primitive fourth root of unity but $i^{2}=-1$ is not.

