Peter Cholak and Juan Migliore Math 222 Monday, February 19, 2001 Quiz 3

Be sure to carefully write up your answers. It is suggested that you first write out a draft of your proposed questions and then carefully rewrite that draft to get your final version. You do not have to write the answers on this sheet of paper.

Consider the set of integers modulo $10, \mathbb{Z}_{10}$.
(a) Identify the additive inverse of each element in $\mathbb{Z}_{10}$.
(b) Identify those elements that have a multiplicative inverse and what their inverses are.

Solution. (a) The additive inverse of $j$ is $10-j$ for $j \in \mathbb{Z}_{10}$.
(b) Each of $1,3,7,9$ has a multiplicative inverse. The inverse of 1 is 1 , the inverse of 3 is 7 , the inverse of 7 is 3 and the inverse of 9 is 9 .

Let $n$ be a positive integer and consider the sum $1+2+3+\ldots+(n-1)$ modulo $n$. Show that if $n$ is odd, this sum is zero in $\mathbb{Z}_{n}$ and if $n$ is even then the sum is $n / 2$ in $\mathbb{Z}_{n}$. Hint: Use the formula for this sum which we saw when discussing induction.

Solution. We know that $S=1+2+3+\ldots+(n-1)=\frac{n(n-1)}{2}$. If $n$ is odd, then $k=\frac{n-1}{2} \in \mathbb{Z}$ and hence $S=k n \equiv_{n} 0$, that is, $S$ is zero in $\mathbb{Z}_{n}$. If $n$ is even, say $n=2 m$, then $S=(n-1) m \equiv_{n} n m-m \equiv_{n}-m \equiv_{n} m \equiv_{n} \frac{n}{2}$, so $S$ is $n / 2$ in $\mathbb{Z}_{n}$.

In $\mathbb{Z}_{66}$, consider the elements $6,8,9,15,35$ and 55 . Identify the one that has a multiplicative inverse in $\mathbb{Z}_{66}$ and find that inverse.
Solution. The only one whose greatest common divisor with 66 is 1 is 35 . (The other greatest common divisors are, respectively, 6, 2, 3, 3 and 11.) Using the Euclidean algorithm we get

$$
\begin{aligned}
66 & =1(35)+31 \\
35 & =1(31)+4 \\
31 & =7(4)+3 \\
4 & =1(3)+1
\end{aligned}
$$

Hence $1=4-1(3)=4-[31-7(4)]=-31+8(4)=-31+8[35-31]=$ $-9(31)+8(35)=-9[66-35]+8(35)=-9(66)+17(35)$. So the multiplicative inverse of 35 in $\mathbb{Z}_{66}$ is 17 .

Prove that if $p$ is a prime and $\alpha, \beta \in \sqrt[p]{1}$ and $\alpha \neq 1$ then there exists an integer $m$ such that $\alpha^{m}=\beta$. (Hints: First, write $\alpha=\zeta^{k}$ and $\beta=\zeta^{r}$ where $\zeta$ is the first $p$ th roof of unity. Second, do $k$ and $r$ have multiplicative inverses in $\mathbb{Z}_{p}$ ?)
Proof. Write $\alpha=\zeta^{k}$ and $\beta=\zeta^{r}$ with $0 \leq k, r<p$ and $\zeta$ the first $p$ th root of unity. By the assumption $\alpha \neq 1$, we have $0<k<p$. By Proposition 4.3, $k$ has a multiplicative inverse, say $l$, in $\mathbb{Z}_{p}$. Then $k l=q p+1$ for some $q \in \mathbb{Z}$.

