Peter Cholak and Juan Migliore Math 222 Monday, March 19, 2001 Quiz 4

Be sure to carefully write up your answers. It is suggested that you first write out a draft of your proposed questions and then carefully rewrite that draft to get your final version. You do not have to write the answers on this sheet of paper.

Find the following examples. You do not have to prove your answers.

1. A ring that is not commutative.
2. A commutative ring that is not unital.
3. A commutative unital ring that is not an integral domain.
4. An integral domain that is not a field.
5. A field that contains the rational numbers \mathbb{Q} and contains $\sqrt{3}$ but is not the whole set of real numbers.

Let E be $\{a+b \sqrt{2} i \mid a, b \in \mathbb{Q}\}$, where i is the complex number with $i^{2}=-1$. We know that E is a ring with usual addition and multiplication.
(1) Show that E is a unital ring.
(2) For any nonzero element $x=a+b \sqrt{2} i \in E$, show that $x^{-1} \in E$.
(3) Show that E is a field.

Consider the set $\{0,2,4\}$ under the usual addition and multiplication modulo 6. This is a ring (you don't have to check that). Is it a commutative ring? a unital ring? a field? (Hint: write out a times table)

Let $p(x)=2 x^{2}+3 x+4$ and $q(x)=4 x^{5}+4 x^{4}+4$. Working in $\mathbb{Z}_{5}[x]$ find $d(x)$ and $r(x)$ such that $q(x)=d(x) p(x)+r(x)$ and the degree of $r(x)$ is less than the degree of $p(x)$.

