Peter Cholak and Juan Migliore Math 222 Monday, March 19, 2001 Quiz4

Be sure to carefully write up your answers. It is suggested that you first write out a draft of your proposed questions and then carefully rewrite that draft to get your final version. You do *not* have to write the answers on this sheet of paper.

Find the following examples. You do not have to prove your answers.

- 1. A ring that is not commutative.
- 2. A commutative ring that is not unital.
- 3. A commutative unital ring that is not an integral domain.
- 4. An integral domain that is not a field.
- 5. A field that contains the rational numbers \mathbb{Q} and contains $\sqrt{3}$ but is not the whole set of real numbers.

Solution.

- 1. The matrix ring $M_2(\mathbb{R})$.
- 2. The set of even integers $2\mathbb{Z}$.
- 3. \mathbb{Z}_6 .
- 4. The integers \mathbb{Z} .
- 5. The set of real numbers of the form $a + b\sqrt{3}$ where a and b are rational numbers. (Let's check this, just for fun. We first claim that this set does not contain $\sqrt{2}$, for example, so it is not the whole set of real numbers. Indeed, suppose that $\sqrt{2} = a + b\sqrt{3}$. Then

$$2 = a^{2} + 3b^{2} + 2ab\sqrt{3}, \quad i.e. \frac{2 - a^{2} - 3b^{2}}{2ab} = \sqrt{3}.$$

But the left-hand side is rational while the right-hand side is not. Contradiction.

Clearly the sum or product of two elements in this set are again in this set. Since this set is contained in \mathbb{R} , it inherits all the properties of a field except inverses. But

$$\frac{1}{a+b\sqrt{3}} = \frac{a}{a^2-3b^2} - \frac{b}{a^2-3b^2}\sqrt{3}$$

so we are done.)

Let E be $\{a + b\sqrt{2}i \mid a, b \in \mathbb{Q}\}$, where i is the complex number with $i^2 = -1$. We know that E is a ring with usual addition and multiplication.

(1) Show that E is a unital ring.

- (2) For any nonzero element $x = a + b\sqrt{2}i \in E$, show that $x^{-1} \in E$.
- (3) Show that E is a field.

Proof. (1) $1 = 1 + 0 \cdot \sqrt{2i} \in E$ and $1 \cdot x = x \cdot 1 = x$ for any $x \in E$. So 1 is

Let $p(x) = 2x^2 + 3x + 4$ and $q(x) = 4x^5 + 4x^4 + 4$. Working in $\mathbb{Z}_5[x]$ find d(x) and r(x) such that q(x) = d(x)p(x) + r(x) and the degree of r(x) is less than the degree of p(x).

than the degree of p(x). Solution: $d(x) = 2x^3 + 4x^2 + 2$ and r(x) = 4x + 1, as seen by the following long division:

	$2x^3 + 4$	x^2	+2
$2x^2 + 3x + 4\sqrt{4}$	$4x^5 + 4x^4 + $		+4
4	$x^5 + x^4 + 3x^3$		
	$3x^4 + 2x^3$		+4
	$3x^4 + 2x^3 +$	x^2	
			+4
		$4x^2 +$	-x + 3
			4x + 1