Peter Cholak and Juan Migliore Math 222 Friday, March 30, 2001 Quiz 5

Be sure to carefully write up your answers. It is suggested that you first write out a draft of your proposed questions and then carefully rewrite that draft to get your final version. You do not have to write the answers on this sheet of paper.

Let F be a field. Show that there exist $a, b \in F$ such that $x^{2}+2$ is a divisor of $x^{43}+a x+b$. (Hint: consider the form of the remainder $r(x)$ when x^{43} is divided by $x^{2}+2$. Do not do the actual division. The degree of $r(x)$ is ??)

We can write $x^{43}=q(x)\left(x^{2}+2\right)+r(x)$ such that $q(x), r(x) \in F[x]$ and $0 \leq \operatorname{deg} r(x) \leq 1$. So $r(x)=c x+d$ for some $c, d \in F$. Take $a=-c$ and $b=-d$, we get $x^{43}+a x+b=x^{43}-c x-d=q(x)\left(x^{2}+2\right)$, which is divided by $x^{2}+2$.

Factor $x^{3}+3 x+1$ over \mathbb{Z}_{5} into irreducible factors.
By a direct calculation, we see that $x=1$ and $x=2$ are solutions of the equation $x^{3}+3 x+1 \bmod 5$. Dividing $x^{3}+3 x+1$ by $(x-1)(x-2)$, we get the quotient $x-2$. So $x^{3}+3 x+1=(x-1)(x-2)^{2}$.

Consider the Galois Field $F=G F\left(3, x^{2}+x+2\right)$. Let α be the associated Galois imaginary.
(a) Show that α is a primitive element in F. Work out the corresponding cyclic table of F.
(b) Find the inverse of each nonzero element in F. Hint: Use part (a).
(c) By definition α is one solution to $x^{2}+x+2=0$ over \mathbb{Z}_{3}. There should of course be another solution. It is also an element of F. Find this element. Is it a power of α ? Hint: Use long division or try the other possibilities.
(a) $\alpha^{2}=2 \alpha+1, \alpha^{3}=2 \alpha+2, \alpha^{4}=2, \alpha^{5}=2 \alpha, \alpha^{6}=\alpha+2, \alpha^{7}=\alpha+1$ and $\alpha^{8}=1$. The order of α is 8 . Since α is a primitive element in F, the corresponding cyclic table of F is as follows:

$$
\begin{align*}
& \alpha^{1}=\alpha \\
& \alpha^{2}=2 \alpha+1 \\
& \alpha^{3}=2 \alpha+2 \\
& \alpha^{4}=2 \\
& \alpha^{5}=2 \alpha \tag{1}\\
& \alpha^{6}=\alpha+2 \\
& \alpha^{7}=\alpha+1 \\
& \alpha^{8}=1
\end{align*}
$$

(b) We have $\left(\alpha^{h}\right)^{-1}=\alpha^{-h}=\alpha^{8-h}$ for any integer h. So $\alpha^{-1}=\alpha+1$, $(2 \alpha+1)^{-1}=\alpha+2,(2 \alpha+2)^{-1}=2 \alpha, 2^{-1}=2,(2 \alpha)^{-1}=2 \alpha+2,(\alpha+2)^{-1}+$ $2 \alpha+1, \alpha+1)^{-1}=\alpha$ and $1^{-1}=1$.

