Peter Cholak and Juan Migliore Math 222 Wednesday, April 11, 2001 Quiz 6

Be sure to carefully write up your answers. It is suggested that you first write out a draft of your proposed questions and then carefully rewrite that draft to get your final version. You do *not* have to write the answers on this sheet of paper.

Section 7.3, Number 10 (slightly modified) (5 points):

- a. For any element $a \in GF(p, P(x))$, let $b \in GF(p, P(x))$ be an element such that $b^{p-1} = a$. Show that then $(kb)^{p-1} = a$ for $1 \le k \le p-1$.
- b. For any element $a \in GF(p, P(x))$, let r(a) denote the number of distinct elements b in GF(p, P(x)) such that $b^{p-1} = a$. Prove that if $a \neq 0$, then r(a) = 0 or p 1. (You have to show that these are the *only* two possibilities.)

Section 8.2, Problems 35 and 36:

- a. (5 points) Prove that if the set S is finite and σ is a function of S into itself, then the following are equivalent (Hint: consider the set $\sigma(S) = {\sigma(x) \mid x \in S}$):
 - (i) If x_1 and x_2 are distinct elements of S then $\sigma(x_1) \neq \sigma(x_2)$ (i.e. σ is one-to-one).
 - (ii) If y is any element of S then there is an element x in S such that $y = \sigma(x)$ (i.e. σ is onto).
- b. (5 points) Show, by means of examples, that when S is an infinite set then neither of the conditions (i) or (ii) necessarily implies the other. Specifically, give an example where
 - (i) is true but (ii) is false;
 - (ii) is true but (i) is false;
 - both (i) and (ii) are true.

- a. Express σ , τ , σ^{-1} and $\sigma\tau$ in disjoint cycle notation.
- b. Find the orders of σ , τ , and $\sigma\tau$.
- c. Write σ and τ as a product of transpositions.
- d. Find the parity of σ , τ , $\sigma\tau$ and $\sigma\tau^2$.