Math 223 Exam 1; February 20, 2004
Instructions for questions 1-4. Answer the questions in the spaces provided. They are worth 5 points each.

1. According to the division algorithm for \mathbf{Z}, what is the quotient and remainder when 55 is divided by -8 ?
2. Consider the expansion

$$
(x+y)^{8}=a x^{8}+b x^{7} y+c x^{6} y^{2}+\cdots
$$

given by the binomial theorem. Express a, b, c as binomial coefficients and determine their explicit numerical values (You do NOT have to evaluate the full expansion, just the part above involving a, b and c).
3. Consider the permutations of the set $\{1,2,3,4\}$ given in two-line notation by

$$
g=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right), \quad h=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{array}\right)
$$

(recall this means $g(1)=2, g(2)=3, \ldots$ etc). Calculate the composite function $g \circ h$ in two-line notation, and then express your answer in cycle notation.
4. If functions $f, g: \mathbf{R} \rightarrow \mathbf{R}$ are defined by $f(x)=x-1$ and $g(x)=x^{2}-1$ for $x \in \mathbf{R}$, compute $(g \circ f)(x)$ for $x \in \mathbf{R}$.

Instructions for Questions 5-8 Give careful statements of the indicated definitions, principles or theorems in the spaces provided. These questions are worth 5 points each. Points will be deducted for unclear or imprecise (or of course incorrect) answers.
5. State the principle of mathematical induction.
6. State the well-ordering principle for \mathbf{N}.
7. Carefully explain what is meant by saying that a function $f: A \rightarrow B$ is a bijection. How is the inverse function $f^{-1}: B \rightarrow A$ defined in terms of f ?
8. Define what is meant by an injection, and state the Schroeder-Bernstein theorem.

Instruction for Questions 9-12 Questions 9-12 are True/False questions worth 5 points each. Write your answer (T or F) in the space provided. No working is required.
9. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions such that $g \circ f$ is surjective, then f is surjective.

Answer:
10. There is a function $f: \mathbf{R} \rightarrow \mathbf{R}$ such that $f(x)=|x-1|$ if $x<4$ and $f(x)=|x|-1$ if $x>2$. Answer:
11. If A, B, C are sets, then $A \cup(B \cap C)=(A \cup B) \cap(A \cap C)$ (Hint: use a Venn diagram). Answer:
12. If A and B are finite sets and there is a surjection $f: A \rightarrow B$, then $|A| \geq|B|$, where $|X|$ denotes the size of a finite set X.

Answer:

Instruction for Questions 13-15 Provide careful proofs of the indicated statements in the spaces provided. Points will be deducted for unclear or imprecise explanation.
13. (15 points) Prove that $\sqrt{2}$ is irrational.
14. (10 points) Prove: if $f: A \rightarrow B, g: B \rightarrow C$ and $h: C \rightarrow D$ are functions, then $(h \circ g) \circ f=h \circ(g \circ f)$.
15. (15 points) Prove by induction that for all $n \in \mathbf{N}, 1+3+5+\cdots+(2 n-1)=n^{2}$.

