Math 223 Exam 1; February 20, 2004

Instructions for questions 1–4. Answer the questions in the spaces provided. They are worth 5 points each.

1. According to the division algorithm for \mathbf{Z} , what is the quotient and remainder when 55 is divided by -8?

2. Consider the expansion

$$(x+y)^8 = ax^8 + bx^7y + cx^6y^2 + \cdots$$

given by the binomial theorem. Express a, b, c as binomial coefficients and determine their explicit numerical values (You do NOT have to evaluate the full expansion, just the part above involving a, b and c).

3. Consider the permutations of the set $\{1, 2, 3, 4\}$ given in two-line notation by

$$g = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \\ 2 \ 3 \ 4 \ 1 \end{pmatrix}, \qquad h = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \\ 3 \ 2 \ 1 \ 4 \end{pmatrix}$$

(recall this means g(1) = 2, g(2) = 3, ... etc). Calculate the composite function $g \circ h$ in two-line notation, and then express your answer in cycle notation.

4. If functions $f, g: \mathbf{R} \to \mathbf{R}$ are defined by f(x) = x - 1 and $g(x) = x^2 - 1$ for $x \in \mathbf{R}$, compute $(g \circ f)(x)$ for $x \in \mathbf{R}$.

Instructions for Questions 5–8 Give careful statements of the indicated definitions, principles or theorems in the spaces provided. These questions are worth 5 points each. Points will be deducted for unclear or imprecise (or of course incorrect) answers.

5. State the principle of mathematical induction.

6. State the well-ordering principle for N.

7. Carefully explain what is meant by saying that a function $f: A \to B$ is a bijection. How is the inverse function $f^{-1}: B \to A$ defined in terms of f?

8. Define what is meant by an injection, and state the Schroeder-Bernstein theorem.

Instruction for Questions 9–12 Questions 9–12 are True/False questions worth 5 points each. Write your answer (T or F) in the space provided. No working is required.

9. If $f: A \to B$ and $g: B \to C$ are functions such that $g \circ f$ is surjective, then f is surjective.

Answer:

10. There is a function $f: \mathbf{R} \to \mathbf{R}$ such that f(x) = |x - 1| if x < 4 and f(x) = |x| - 1 if x > 2. Answer:

11. If A, B, C are sets, then $A \cup (B \cap C) = (A \cup B) \cap (A \cap C)$ (Hint: use a Venn diagram). Answer:

12. If A and B are finite sets and there is a surjection $f: A \to B$, then $|A| \ge |B|$, where |X| denotes the size of a finite set X.

Answer:

Instruction for Questions 13–15 Provide careful proofs of the indicated statements in the spaces provided. Points will be deducted for unclear or imprecise explanation.

13. (15 points) Prove that $\sqrt{2}$ is irrational.

14. (10 points) Prove: if $f: A \to B$, $g: B \to C$ and $h: C \to D$ are functions, then $(h \circ g) \circ f = h \circ (g \circ f)$.

15. (15 points) Prove by induction that for all $n \in \mathbb{N}$, $1 + 3 + 5 + \cdots + (2n - 1) = n^2$.