Math 223 Final Exam; May 3, 2004

Instructions for questions 1–8. Answer the questions in the spaces provided. They are worth 5 points each.

1. Consider the permutations of the set $\{1, 2, 3, 4\}$ given in two-line notation by

$$g = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \\ 3 \ 4 \ 1 \ 2 \end{pmatrix}, \qquad h = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \\ 3 \ 2 \ 1 \ 4 \end{pmatrix}$$

(recall this means $g(1) = 3, g(2) = 4, \ldots$ etc). Calculate the composite function $g \circ h$, expressing your answer in two-line notation.

2. Find all integer solutions x, y of the linear Diophantine equation 30x + 24y = 18.

3. Use limit laws to determine the limit of the sequence $\langle \frac{2 \cdot 4^n + 2^n}{3^n + 3 \cdot 4^n} \rangle$ as $n \to \infty$.

4. Determine the least upper bound of the subset A of \mathbf{R} defined by

$$A := \{ x \in \mathbf{R} \mid -1 \le x \le 2 \} \cup \{ 3 - \frac{200}{n} \mid n \in \mathbf{N} \}.$$

5. Find all the distinct solutions (modulo 10) of the equation $x^2 - x - 2 \equiv 0 \pmod{10}$.

6. The function $f: \mathbf{R} \to \mathbf{R}$ is defined by $f(x) = x^3 - 2$. Determine whether f is a bijection and if so, give an explicit formula for the inverse function f^{-1} .

7. Calculate the inverse $[25]^{-1}$ of the congruence class of 25 in \mathbf{Z}_{1001} (the integers modulo 1001).

8. Determine the integer a with $0 \le a \le 22$ and $2^{100} \equiv a \pmod{23}$.

Instructions for Questions 9–14 Give careful statements of the indicated definitions, principles or theorems in the spaces provided. These questions are worth 5 points each. Points will be deducted for unclear or imprecise (or of course incorrect) answers.

9. Let ~ be an equivalence relation on a set X. Give the definition of the equivalence class [x] of an element x of X. If $a, b, c \in X$ with $c \in [a] \cap [b]$, what can you conclude about [a] and [b]?

10. Explain what is meant by saying that a sequence $\langle a_n \rangle$ of real numbers converges to a limit L.

11. Explain what is meant by a lower bound, and the greatest lower bound, of a subset A of \mathbf{R} . Carefully state the greatest lower bound property of \mathbf{R} .

12. Give a careful definition of the notion of a Cauchy sequence.

13. State the Archimedean property of \mathbf{R} .

14. State the Bolzano-Weierstrass theorem.

Instruction for Questions 15–18 Questions 15–18 are True/False questions worth 5 points each. Write your answer (T or F) in the space provided. No working is required.

15. If $f: A \to B$ and $g: B \to C$ are functions such that $g \circ f$ is injective, then f is injective.

Answer:

16. Any subsequence $\langle b_n \rangle$ of a Cauchy sequence $\langle a_n \rangle$ is convergent.

Answer:

17. If $N \ge 2$ is any integer and $a \in \mathbb{Z}$ is not divisible by N, then $a^{N-1} \equiv 1 \pmod{N}$.

Answer:

18. The congrunce $ax \equiv 1 \pmod{p}$ has a unique solution (modulo p) for x if p is a prime number and a is an integer not divisible by p.

Answer:

Instruction for Questions 19–24 Provide careful proofs of the indicated statements in the spaces provided. Points will be deducted for unclear or imprecise explanation. Each question is worth 10 points.

19. Prove by induction on n that $1 + 2 + 3 + \cdots + n = \frac{1}{2}n(n+1)$ for $n \in \mathbb{N}$.

20. Prove that if the sequence $\langle a_n \rangle$ is convergent, it is a Cauchy sequence.

21. Prove that $\sqrt{3}$ is irrational.

22. Prove that any convergent sequence is bounded.

23. State and prove the rational zeros theorem, on the rational zeros of a polynomial with integer coefficients.

24. Prove that if a, L are real numbers such that $a \ge L - \epsilon$ for all real numbers $\epsilon > 0$, then $a \ge L$.