Axioms for R

Field Axioms: There are operations + (addition) and \cdot (multiplication) on \mathbf{R} with the following properties.

- + and \cdot are commutative:

$$
x+y=y+x, \quad x \cdot y=y \cdot x
$$

- + and • are associative:

$$
x+(y+z)=(x+y)+z, \quad x \cdot(y \cdot z)=(x \cdot y) \cdot z .
$$

- There is an additive identity $0 \in \mathbf{R}$ and a multiplicative identity $1 \in \mathbf{R}$:

$$
x+0=x, \quad x \cdot 1=x .
$$

- For each $x \in \mathbf{R}$ there is $y \in \mathbf{R}$ such that $x+y=0$. If $x \neq 0$, then there is $z \in \mathbf{R}$ such that $x z=1$. (We write $y=-x$ and $z=1 / x$.)
- Multiplication is distributive over addition:

$$
x \cdot(y+z)=x \cdot y+x \cdot z .
$$

Order Axioms: There is a relation $<$ on \mathbf{R} with the following properties

- (Trichotomy) For each $x, y \in \mathbf{R}$ exactly one of the following is true: $x<y, y<x$, or $x=y$.
- (Transitivity) If $x<y$ and $y<z$, then $x<z$.

Axioms combining arithmetic and order:

- If $x<y$ then $x+z<y+z$.
- If $x, y>0$ then $x \cdot y>0$.

