Homework 11

(due Tuesday, April 27)
From the book: 13.30 (hint: show the sequence is decreasing and bounded below), 14.8, 14.14 (hint: it is useful to show that there exists $N \in \mathbf{N}$ such that $n \geq N$ implies $b_{n} \geq M / 2$), 14.24a.
...and one more: here is a (really good) algorithm for computing square roots of positive numbers. Let $a \in \mathbf{R}$ be a positive real number, and define a sequence $\langle x\rangle$ inductively by setting

- $x_{1}=a$;
- for all $n \geq 1$, set $x_{n+1}=\frac{1}{2}\left(x_{n}+a / x_{n}\right)$.

Complete each of the following steps to show that $\lim _{n \rightarrow \infty} x_{n}=\sqrt{a}$.
(a) Prove that $x_{n} \geq 0$ for all n (Hint: induction).
(b) Prove $x_{n}^{2}>a$ for all $n \in \mathbf{N}$ (Hint: induction again, look at the difference between the quantities).
(c) Prove that $\langle x\rangle$ is decreasing.
(d) Now we know that $\langle x\rangle$ converges. Why? Call the limit L.
(e) Show that $\lim _{n \rightarrow \infty} x_{n+1}$ is also L. That is, if we set $y_{n}=x_{n+1}$, then show that $<y>$ converges to L.
(f) Take limits of both sides of the formula for x_{n+1} to show that $L^{2}=a$.

Use this algorithm (and a calculator) to compute $\sqrt{2}$ accurately to five decimal places. For your answer, it's enough to list all the x_{n} you compute along the way.

