Solutions to Homework 3

3.11. Let $S(n)$ denote the number of subsets of an n-element set. The first case is $n=0-$ i.e. the empty set. The only subset of the empty set is the empty set itself, so when $n=0$, we see that $S(0)=1=2^{0}$.

Now we move on to the induction step: supposing we know that $S(n)=2^{n}$ when $n=k$, let us show that the same is true when $n=k+1$. Let A be a set containing $k+1$ elements. Let $x \in A$ be any element and observe that $B:=A-\{x\}$ is a k-element set. Now A has two types of subsets: those that don't contain x and those that do. A subset is of the first type if and only if it is a subset of B. Therefore by our induction hypothesis, there are exactly 2^{k} subsets of the first type. Moreover, a subset is of the second type if and only if it has the form $\{x\} \cup C$, where $C \subset A$ does not contain x. But that means C is a subset of the first type. So that means there are 2^{k} possibilities for C and therefore 2^{k} subsets $\{x\} \cup C$ of the second type. All told, we see that

$$
S(k+1)=2^{k}+2^{k}=2^{k+1} .
$$

This finishes the induction step.
We conclude that $S(n)=2^{n}$ for all $n \in \mathbf{N}$.
3.15. Let

$$
S(n)=\sum_{i=1}^{n}(-1)^{i} i^{2}=-1+2^{2}-3^{2}+4^{2}+\ldots(-1)^{n} n^{2} .
$$

When $n=1$, we have

$$
S(1)=-1=(-1)^{1} \frac{1(1+1)}{2}
$$

so the assertion is true in this case.
Now we proceed to the induction step: Suppose that the assertion is true when $n=k$-i.e. that

$$
S(k)=(-1)^{k} \frac{k(k+1)}{2}
$$

We must then prove that the assertion is true when $n=k+1$-i.e. we must show that

$$
S(k+1)=(-1)^{k+1} \frac{(k+1)((k+1)+1)}{2}=(-1)^{k+1} \frac{k^{2}+3 k+2}{2} .
$$

To do this, we relate $S(k+1)$ to $S(k)$ and use our induction hypothesis as follows.

$$
\begin{aligned}
S(k+1) & =\sum_{i=1}^{k+1}(-1)^{i} i^{2} \\
& =(-1)^{k+1}(k+1)^{2}+\sum_{i=1}^{k}(-1)^{i} i^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =-(-1)^{k}\left(k^{2}+2 k+1\right)+(-1)^{k} \frac{k(k+1)}{2} \\
& =(-1)^{k} \frac{-2\left(k^{2}+2 k+1\right)+\left(k^{2}+k\right)}{2} \\
& =(-1)^{k} \frac{-k^{2}-3 k-2}{2} \\
& =(-1)(-1)^{k} \frac{k^{2}+3 k+2}{2} \\
& =(-1)^{k+1} \frac{k^{2}+3 k+2}{2}
\end{aligned}
$$

which is exactly what we wanted. This finishes the inductive step and allows us to conclude that

$$
S(n)=(-1)^{n} \frac{n(n+1)}{2}
$$

for all $n \in \mathbf{N}$.
3.16. Let

$$
S(n)=\sum_{i=1}^{n} i^{3}=1^{3}+2^{3}+\ldots+n^{3}
$$

Initial case: When $n=1$, we have

$$
S(1)=1^{3}=1=\left(\frac{1(1+1)}{2}\right)^{2} .
$$

Inductions step: Now suppose that the assertion is true when $n=k$-i.e. that

$$
S(k)=\left(\frac{k(k+1)}{2}\right)^{2}
$$

Then on the one hand

$$
\begin{aligned}
S(k+1) & =\sum_{i=1}^{k+1} i^{3}=S(k)+(k+1)^{3} \\
& =\left(\frac{k(k+1)}{2}\right)^{2}+(k+1)^{3} \\
& =\frac{k^{2}(k+1)^{2}+4(k+1)^{3}}{4} \\
& =\frac{k^{4}+6 k^{3}+13 k^{2}+12 k+4}{4} .
\end{aligned}
$$

And on the other hand

$$
\left(\frac{(k+1)((k+1)+1)}{2}\right)^{2}=\frac{\left(k^{2}+2 k+1\right)\left(k^{2}+4 k+4\right)}{4}=\frac{k^{4}+6 k^{3}+13 k^{3}+12 k+4}{4} .
$$

Thus

$$
S(k+1)=\left(\frac{(k+1)((k+1)+1)}{2}\right)^{2}
$$

so the assertion holds for $n=k+1$.
We conclude that

$$
S(n)=\left(\frac{n(n+1)}{2}\right)^{2}
$$

for all $n \in \mathbf{N}$.
3.26. Initial $\operatorname{step}(\mathbf{n}=\mathbf{1})$: we have by definition that $a_{1}=1$, which is certainly equal to $1^{3}-1+1=1$. So the assertion is true when $n=1$.

Induction step: we assume that the assertion is true when $n=k$-i.e. that $a_{k}=$ $k^{3}-k+1$. Given this assumption, we have on the one hand that

$$
a_{k+1}=a_{k}+3 k(k+1)=k^{3}-k+1+3 k^{2}+3 k=k^{3}+3 k^{2}+2 k+1
$$

and on the other hand that

$$
(k+1)^{3}-(k+1)+1=k^{3}+3 k^{2}+3 k+1-k-1+1=k^{3}+3 k^{2}+2 k+1 .
$$

So $a_{k+1}=(k+1)^{3}-(k+1)+1$, as desired (did you ever really doubt it?), and the induction step is complete.

We conclude that $a_{n}=n^{3}-n+1$ for all $n \in \mathbf{N}$.
3.33. Let's agree to count things like $[1,1]$ as a closed interval, even though it only contains a single point. It'll affect the answer a little, but it won't really change the proof. As for the answer, I claim that the interval [$1, n$] contains exactly $n(n+1) / 2$ intervals with integer endpoints.
Proof.(by induction)
Initial step ($\mathbf{n}=\mathbf{1}$): in this case our interval is $[1,1]$ and contains exactly one subinterval with integer endpoints-namely $[1,1]$. Since $1=1(1+1) / 2$, the assertion is true when $n=1$.

Induction step: suppose we know that the interval $[1, k]$ contains exactly $k(k+1) / 2$ subintervals with integer endpoints. I must show that the interval $[1, k+1]$ contains exactly $(k+1)((k+1)+1) / 2$ subintervals with integer endpoints.

To do this, I observe that subintervals $I \subset[1, k+1]$ with integer endpoints come in two types:

1. subintervals $I \subset[1, k]$.
2. subintervals $I=[n, k+1]$ having $k+1$ as an endpoint.

Now by the induction hypothesis there $k(k+1) / 2$ subintervals of the first type. And since n can range from 1 to $k+1$, there are exactly $k+1$ distinct subintervals of the second type. All told we have

$$
\frac{k(k+1)}{2}+k+1=\frac{k^{2}+3 k+2}{2}
$$

subintervals of $[1, k+1]$ with integer endpoints. On the other hand,

$$
\frac{(k+1)((k+1)+1)}{2}=\frac{k^{2}+3 k+2}{2}
$$

works out to be the same number. So the assertion is true for the case $n=k+1$, concluding the induction step.

It follows that the assertion is true for all n.
3.38. Suppose that the goal of the game is to be the first to bring the total to $4 n$ where $n \geq 1$. Then player two will always win provide she plays correctly.
Proof.(by induction) Initial step ($\mathbf{n}=\mathbf{1}$): If the goal is to be the first to reach $4 \cdot 1=4$, and player one first move is to play $m \in\{1,2,3\}$, then player two immediately wins by playing $4-n$. So the above assertion is true when $n=1$.

Induction step: Now suppose that player two can always win the game should the goal be to be the first to reach $4 k$. We must show that player two will be able to win if the goal is to be first to $4(k+1)$. In fact, she can employ the following never fail strategy: by the induction hypothesis she'll can play so that she's the first to bring the total to exactly $4 k$. But when that happens and the hapless player one adds $m \in\{1,2,3\}$ to the total, player two triumphs yet again by tacking on $4-m$ and bringing the total to

$$
4 k+m+4-m=4 k+4=4(k+1) .
$$

The induction step is now complete.
We conclude that player two will always win this game if she plays it right.
3.50. Assertion: If $f: \mathbf{N} \rightarrow(0, \infty)$ satisfies $f(1)=c$ and $f(x-y)=f(x) / f(y)$ for all $x, y \in \mathbf{Z}$, then $f(n)=c^{n}$ for all $n \in \mathbf{N}$. (Note that this covers the case where $c=1$, too.)

Proof.(by induction)
Initial step $(\mathbf{n}=\mathbf{1}): f(1)=c=c^{1}$ is given to us as as a hypothesis.
Induction step: Supposing that $f(k)=c^{k}$, we have that

$$
c^{k}=f(k)=f((k+1)-1)=f(k+1) / f(1)=f(k+1) / c
$$

by hypothesis. Hence

$$
f(k+1)=c \cdot c^{k}=c^{k+1}
$$

completing the induction step.
We conclude that $f(n)=c^{n}$ for all $n \in \mathbf{N}$.

