## Solutions to 223 Homework

Practice: 4.1, 4.8, 4.9, 4.22, 4.24
To turn in: 4.2, 4.6, 4.12, 4.21 (assume $n$ is odd), 4.25, 4.31, 4.34ab, 4.36a, Extra credit: 4.21 (for even $n$ ), 4.39 (prove your formula is correct)
4.2. We have

$$
\begin{aligned}
333_{(12)} & =3 * 12^{2}+3 * 12^{1}+3 * 12^{0}=471 \\
3333_{5} & =3 * 5^{3}+3 * 5^{2}+3 * 5^{1}+3 * 5^{0}=468
\end{aligned}
$$

so the first number is larger.
4.6. $f$ is not an injection because, for instance, $f$ (Sunday) $=f$ (Monday) $=6$.
4.12.
a) False. For example $f(x)=e^{x}$ is decreasing, but -1 is not in $f(\mathbf{R})$.
b) False. For example the constant function $f(x)=0$ for all $x \in \mathbf{R}$ is non-decreasing but definitely not injective!
c) False. For example the function $f: \mathbf{R} \rightarrow \mathbf{R}$ given by

$$
f(x)=\left\{\begin{array}{rll}
1 / x & \text { if } & x \neq 0 \\
0 & \text { if } & x=0
\end{array}\right.
$$

is injective but not monotone.
d) True.

Proof. (of contrapositive statement) If $f$ is bounded, then there is a number $M \in \mathbf{R}$ such that $|f(x)| \leq M$ for all $x \in \mathbf{R}$. In particular, $f(x) \neq M+1$ for any $x \in \mathbf{R}$. So $f$ is not surjective.
e) False. $f(x)=e^{x}$ is again a counterexample.
4.21. Suppose that $n$ is odd. Then for each subset $S \subset[n]$ with an even number of elements, set

$$
f(S)=[n]-S
$$

Then $f(S)$ has an odd number of elements. So $f$ is a function from $A$ to $B$. Moreover, $f$ is bijective, because $f \circ g=g \circ f=\mathrm{id}$ where $g: B \rightarrow A$ is also given by

$$
g(S)=[n]-S
$$

a) Not a surjection because $f(a, b)=a+b \geq 1+1=2$, so $1 \notin f(\mathbf{N} \times \mathbf{N})$.
b) A surjection: given $n \in \mathbf{N}$, we have $f(n, 1)=n \cdot 1=n$.
c) A surjection: once again, for any $n \in \mathbf{N}$, we have $f(n, 1)=n \cdot 1 \cdot 2 / 2=n$.
d) Not a surjection because $f(a, b) \geq(1+1) \cdot 1 \cdot(1+1) / 2=2$ for all $(a, b) \in \mathbf{N} \times \mathbf{N}$. So $1 \neq f(a, b)$ for any $(a, b) \in \mathbf{N} \times \mathbf{N}$.
e) Not a surjection because (I claim) $2 \notin f(\mathbf{N} \times \mathbf{N})$. To see this, note that $f(1,1)=1$, but if either $a$ or $b$ exceeds 1 , then $f(a, b) \geq 1 \cdot 2 \cdot(1+2) / 2=3$. Either way, $f(a, b) \neq 2$ for any $(a, b) \in \mathbf{N} \times \mathbf{N}$.
4.31. Suppose in order to obtain a contradiction that $f^{-1}$ is not increasing on $B$. Then there are numbers $b_{1}<b_{2}$ in $B$ such that $f^{-1}\left(b_{1}\right) \geq f^{-1}\left(b_{2}\right)$. Now since $f$ is a bijection, so is $f^{-1}$. In particular, $f^{-1}$ is injective. This means that $f^{-1}\left(b_{1}\right) \neq f^{-1}\left(b_{2}\right)$. Hence

$$
f^{-1}\left(b_{1}\right)>f^{-1}\left(b_{2}\right)
$$

But then because $f$ is increasing, we have

$$
b_{1}=f\left(f^{-1}\left(b_{1}\right)\right)>f\left(f^{-1}\left(b_{2}\right)\right)=b_{2},
$$

which contradicts our assumption that $b_{1}<b_{2}$. Therefore $f^{-1}$ is increasing.

### 4.34ab.

a) True

Proof. It suffices to prove the contrapositive statement: "if $f$ is not injective, then $h$ is not injective." So:
If $f$ is not injective, that means there are points $a_{1}, a_{2} \in A$ such that $a_{1} \neq a_{2}$ but $f\left(a_{1}\right)=f\left(a_{2}\right)$. This further implies that

$$
h\left(a_{1}\right)=g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)=h\left(a_{2}\right) .
$$

So $h$ is not injective.
b) False.

Counterexample: Let $f:[0, \infty) \rightarrow \mathbf{R}$ be given by $f(x)=x$. Let $g: \mathbf{R} \rightarrow \mathbf{R}$ be given by $g(x)=x^{2}$. In particular $g$ is not injective because $g(-x)=g(x)$ for all $x \in \mathbf{R}$.
Then $h:[0, \infty) \rightarrow \mathbf{R}$ is given by the same formula $h(x)=x^{2}$ as $g$, but $h$ is injective because it's domain contains only positive real numbers, and $x \mapsto x^{2}$ is monotone increasing for $x>0$.

### 4.36a.

a) Suppose that $f \circ g: A \rightarrow A$ is the identity function. Then for any $a \in A$, we have $f(b)=a$, where $b=g(a)$. Hence the image of $f$ is all of $A$, and we conclude that $f$ is surjective.

