Homework 9

Book problems to turn in: 8.10, 8.12 (don't worry about the interpretation part, although it is a worthwhile thing to think about)
...and some others to turn in: Recall that we defined the rational numbers to be the equivalence classes a / b of pairs $(a, b) \in \mathbf{Z} \times(\mathbf{Z}-\{0\})$ with the equivalence relation

$$
(a, b) \sim(c, d)
$$

if and only if $a d=b c$.

1. Show by example that \sim fails to be an equivalence relation if we allow $(a, b) \in \mathbf{Z} \times \mathbf{Z}$ (i.e. we allow b to be 0).
2. Here is an apparently simpler way (than the one we defined in class) to add ordered pairs $(a, b),(c, d) \in \mathbf{Z} \times(\mathbf{Z}-\{0\})$:

$$
(a, b)+(c, d):=(a+b, c+d)
$$

Give examples illustrating the following two ways in which this definition is inappropriate for adding rational numbers.
(a) The result of $(a, b)+(c, d)$ might not be in $\mathbf{Z} \times(\mathbf{Z}-\{0\})$.
(b) If $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ and $(c, d) \sim\left(c^{\prime}, d^{\prime}\right)$, then $(a, b)+(c, d)$ is not necessarily equivalent to $\left(a^{\prime}, b^{\prime}\right)+\left(c^{\prime}, d^{\prime}\right)$.
3. Show that the distributive law works for rational numbers. That is, if $a / b, c / d, e / f$ are rational, then

$$
\frac{a}{b} \cdot\left(\frac{c}{d}+\frac{e}{f}\right)=\frac{a}{b} \cdot \frac{c}{d}+\frac{a}{b} \cdot \frac{c}{d} .
$$

Restated using ordered pairs instead of fractions, this becomes

$$
(a, b) \cdot((c, d)+(e, c)) \sim(a, b) \cdot(c, d)+(a, b) \cdot(e, f)
$$

Solve the problem by working with ordered pairs to prove this last statement.
4. Here is another way to show that the set \mathbf{Q} of all rational numbers is countable. By the Schröder-Bernstein Theorem, it's enough to find injective functions $f: \mathbf{N} \rightarrow \mathbf{Q}$ and $g: \mathbf{Q} \rightarrow \mathbf{N}$. So...
(a) Let $g: \mathbf{N} \rightarrow \mathbf{Q}$ be given by $g(n)=n / 1$. Then g is injective because

$$
g(m)=g(n) \rightarrow m / 1=n / 1 \rightarrow m \cdot 1=n \cdot 1 \rightarrow m=n .
$$

(b) Define $f_{1}: \mathbf{Q} \rightarrow \mathbf{Z} \times \mathbf{N}$ by $f_{1}(x)=(p, q)$ where $x=p / q, q>0$ and $\operatorname{gcd}(p, q)=1$. Then f_{1} is injective because p and q are uniquely determined by x (we proved this in class).
(c) Find a bijection $f_{2}: \mathbf{Z} \times \mathbf{N} \rightarrow \mathbf{N} \times \mathbf{N}$ (remember how we defined a bijection from \mathbf{Z} to \mathbf{N} awhile back). OK, you finally have to do something! You don't need to show that your f_{2} is a bijection, as long as it actually is one.
(d) Define $f_{3}: \mathbf{N} \times \mathbf{N} \rightarrow \mathbf{N}$ by $f_{3}(m, n)=2^{m} \cdot 3^{n}$. Prove that f_{3} is injective. (Hint: Look in the book at the discussion about prime factorizations.)
(e) The function $f=f_{3} \circ f_{2} \circ f_{1}: \mathbf{Q} \rightarrow \mathbf{N}$ is a composition of injective functions and therefore injective. We now have injective functions $g: \mathbf{N} \rightarrow \mathbf{Q}$ and $f: \mathbf{Q} \rightarrow \mathbf{N}$, so we're done.

Note that the only places where you have to do something is in parts (c) and (d).

