
Solutions to Homework 10

Book problems to turn in: 13.2, 13.8, 13.11, 13.21, 13.22, 13.25, 13.29

13-2. This is a colloquial version of the Archimedean principle (Theorem 13.9). Imagine
that a is very small and b is very large in the statement of that theorem.

13-8. False. For example S = {0, 1} (i.e. the set containing only 0 and 1) has 0 = inf S and
1 = sup S.

13-11. Let A = limn→∞ an and B = limn→∞ bn.

(a) This is true. If A < B, then I choose

ε =
B − A

2
,

(which is positive—this is the important thing). By definition of limit, there are
numbers N ′, N ′′ ∈ N such that

n ≥ N ′ ⇒ |an − A| < ε

n ≥ N ′′ ⇒ |bn −B| < ε

Therefore, if N = max{N ′, N ′′} and n ≥ N , I have (in particular) that

an − A <
B − A

2
and B − bn <

B − A

2
.

Rearranging these two inequalities gives

an < A +
B − A

2
=

A + B

2
= B − B − A

2
< bn.

So in summary, an < bn whenever n ≥ N . �

(b) This is false. Consider, for example an = 1 + 1/n and bn = 1− 1/n. Then

lim
n→∞

an = 1 ≤ 1 = lim
n→∞

bn,

but an > bn for all n ∈ N.

13-21. Proof. Assume that the least upper bound property is true. I will show then that
the greatest lower bound property is also true.

Let S ⊂ R be a non-empty set that is bounded below. Let M ∈ R be any lower bound.
Let

T = {x ∈ R : −x ∈ S}.



Then I claim that T is bounded above by −M : if x ∈ T , then −x ∈ S, so −x ≥ M .
Multiplying through by −1 gives x ≤ −M .

Since T is non-empty and bounded above, the least upper bound property gives a least
upper bound m for T . In particular, m ≤ −M . It follows that −m ≥ M , and we can use
the same argument as in the previous paragraph to conclude that −m is a lower bound for
T . Since M was arbitrary we see that −m is a lower bound for T that is at least as large
as any other lower bound—in other words −m is the greatest lower bound for T . So the
greatest lower bound property holds.

Exactly the same reasoning shows that the greatest lower bound property implies the least
upper bound property. �

13-22.

(a) Rearranging the inequality gives
x(x− 5) < 0,

which is true if and only if the two factors have opposite signs. This happens when
x > 0 and x < 5—i.e. S = (0, 5). Therefore, sup S = 5 and inf S = 0.

(b) Rearranging the inequality gives

x(x− 1)2 > 0.

The squared term is positive for all x except 1, Hence S = (0, 1)∪ (1,∞), so inf S = 0,
but S has no upper bound and therefore no least upper bound.

(c) This time, I rearrange and find

x(x2 − 4x + 1) < 0

which will be true when the two factors have opposite signs. The quadratic term has
roots 2 ±

√
3 and is positive for |x| large. Hence, the quadratic term is positive for

x ∈ (2−
√

3, 2+
√

3) and negative for x ∈ (−∞, 2−
√

3)∪(2+
√

3,∞). Since 2−
√

3 > 0,
I conclude that S = (−∞, 0) ∪ (2−

√
3, 2 +

√
3). Therefore sup S = 2 +

√
3, but inf S

does not exist.

�

13-25. Let ε > 0 be given, and set N > 1
ε2+2ε

. If n ≥ N , I have

|
√

1 + n−1 − 1| ≥ |
√

1 + N−1 − 1|
> |

√
1 + ε2 + 2ε− 1|

= |
√

(1 + ε)2 − 1| = ε.

So to summarize: I have shown that n ≥ N implies |
√

1 + n−1 − 1| < ε. This proves that

lim
n→∞

√
1 + n−1 = 1.



�

13-29. Proof. To see that 〈x〉 is monotone, note that

xn+1 − xn =
n + 2

2n + 3
− n + 1

2n + 1
=

−1

(2n + 1)(2n + 3)
< 0

for all n ∈ N. That is, xn+1 < xn for all n ∈ N, so the sequence is monotone decreasing. On
the other hand, it’s clear that

xn =
1 + n

1 + 2n
> 0

for all n ∈ N. So the sequence is bounded below. It follows that the sequence 〈x〉 converges.
Now I will show that the sequence converges to 1/2. Given ε > 0, I choose N > 1

4ε
− 1

2
.

Then if n ≥ N , I estimate∣∣∣∣ n + 1

2n + 1
− 1

2

∣∣∣∣ =
1

4n + 2
≤ 1

4N + 2
<

1

4( 1
4ε
− 1

2
) + 2

= ε.

So limn→∞ xn = 1/2. �


