Solutions to Homework 10

Book problems to turn in: 13.2, 13.8, 13.11, 13.21, 13.22, 13.25, 13.29

13-2. This is a colloquial version of the Archimedean principle (Theorem 13.9). Imagine that a is very small and b is very large in the statement of that theorem.

13-8. False. For example $S=\{0,1\}$ (i.e. the set containing only 0 and 1) has $0=\inf S$ and $1=\sup S$.

13-11. Let $A=\lim _{n \rightarrow \infty} a_{n}$ and $B=\lim _{n \rightarrow \infty} b_{n}$.
(a) This is true. If $A<B$, then I choose

$$
\epsilon=\frac{B-A}{2}
$$

(which is positive - this is the important thing). By definition of limit, there are numbers $N^{\prime}, N^{\prime \prime} \in \mathrm{N}$ such that

$$
\begin{aligned}
n \geq N^{\prime} & \Rightarrow\left|a_{n}-A\right|<\epsilon \\
n \geq N^{\prime \prime} & \Rightarrow\left|b_{n}-B\right|<\epsilon
\end{aligned}
$$

Therefore, if $N=\max \left\{N^{\prime}, N^{\prime \prime}\right\}$ and $n \geq N$, I have (in particular) that

$$
a_{n}-A<\frac{B-A}{2} \text { and } B-b_{n}<\frac{B-A}{2} .
$$

Rearranging these two inequalities gives

$$
a_{n}<A+\frac{B-A}{2}=\frac{A+B}{2}=B-\frac{B-A}{2}<b_{n} .
$$

So in summary, $a_{n}<b_{n}$ whenever $n \geq N$.
(b) This is false. Consider, for example $a_{n}=1+1 / n$ and $b_{n}=1-1 / n$. Then

$$
\lim _{n \rightarrow \infty} a_{n}=1 \leq 1=\lim _{n \rightarrow \infty} b_{n}
$$

but $a_{n}>b_{n}$ for all $n \in \mathbf{N}$.

13-21. Proof. Assume that the least upper bound property is true. I will show then that the greatest lower bound property is also true.

Let $S \subset \mathbf{R}$ be a non-empty set that is bounded below. Let $M \in \mathbf{R}$ be any lower bound. Let

$$
T=\{x \in \mathbf{R}:-x \in S\}
$$

Then I claim that T is bounded above by $-M$: if $x \in T$, then $-x \in S$, so $-x \geq M$. Multiplying through by -1 gives $x \leq-M$.

Since T is non-empty and bounded above, the least upper bound property gives a least upper bound m for T. In particular, $m \leq-M$. It follows that $-m \geq M$, and we can use the same argument as in the previous paragraph to conclude that $-m$ is a lower bound for T. Since M was arbitrary we see that $-m$ is a lower bound for T that is at least as large as any other lower bound-in other words $-m$ is the greatest lower bound for T. So the greatest lower bound property holds.

Exactly the same reasoning shows that the greatest lower bound property implies the least upper bound property.

13-22.

(a) Rearranging the inequality gives

$$
x(x-5)<0
$$

which is true if and only if the two factors have opposite signs. This happens when $x>0$ and $x<5$-i.e. $S=(0,5)$. Therefore, $\sup S=5$ and $\inf S=0$.
(b) Rearranging the inequality gives

$$
x(x-1)^{2}>0
$$

The squared term is positive for all x except 1 , Hence $S=(0,1) \cup(1, \infty)$, so $\inf S=0$, but S has no upper bound and therefore no least upper bound.
(c) This time, I rearrange and find

$$
x\left(x^{2}-4 x+1\right)<0
$$

which will be true when the two factors have opposite signs. The quadratic term has roots $2 \pm \sqrt{3}$ and is positive for $|x|$ large. Hence, the quadratic term is positive for $x \in(2-\sqrt{3}, 2+\sqrt{3})$ and negative for $x \in(-\infty, 2-\sqrt{3}) \cup(2+\sqrt{3}, \infty)$. Since $2-\sqrt{3}>0$, I conclude that $S=(-\infty, 0) \cup(2-\sqrt{3}, 2+\sqrt{3})$. Therefore $\sup S=2+\sqrt{3}$, but inf S does not exist.

13-25. Let $\epsilon>0$ be given, and set $N>\frac{1}{\epsilon^{2}+2 \epsilon}$. If $n \geq N$, I have

$$
\begin{aligned}
\left|\sqrt{1+n^{-1}}-1\right| & \geq\left|\sqrt{1+N^{-1}}-1\right| \\
& >\left|\sqrt{1+\epsilon^{2}+2 \epsilon}-1\right| \\
& =\left|\sqrt{(1+\epsilon)^{2}}-1\right|=\epsilon
\end{aligned}
$$

So to summarize: I have shown that $n \geq N$ implies $\left|\sqrt{1+n^{-1}}-1\right|<\epsilon$. This proves that

$$
\lim _{n \rightarrow \infty} \sqrt{1+n^{-1}}=1
$$

13-29. Proof. To see that $\langle x\rangle$ is monotone, note that

$$
x_{n+1}-x_{n}=\frac{n+2}{2 n+3}-\frac{n+1}{2 n+1}=\frac{-1}{(2 n+1)(2 n+3)}<0
$$

for all $n \in \mathbf{N}$. That is, $x_{n+1}<x_{n}$ for all $n \in \mathbf{N}$, so the sequence is monotone decreasing. On the other hand, it's clear that

$$
x_{n}=\frac{1+n}{1+2 n}>0
$$

for all $n \in \mathbf{N}$. So the sequence is bounded below. It follows that the sequence $\langle x\rangle$ converges.
Now I will show that the sequence converges to $1 / 2$. Given $\epsilon>0$, I choose $N>\frac{1}{4 \epsilon}-\frac{1}{2}$. Then if $n \geq N$, I estimate

$$
\left|\frac{n+1}{2 n+1}-\frac{1}{2}\right|=\frac{1}{4 n+2} \leq \frac{1}{4 N+2}<\frac{1}{4\left(\frac{1}{4 \epsilon}-\frac{1}{2}\right)+2}=\epsilon .
$$

So $\lim _{n \rightarrow \infty} x_{n}=1 / 2$.

