Solutions to Homework 11

Solutions

13-30. Proof. I claim that the sequence $\langle x\rangle$ is increasing. To prove this, I check the difference

$$
\begin{aligned}
x_{n+1}-x_{n} & =\left(\frac{1}{n+2}+\ldots+\frac{1}{2 n}+\frac{1}{2 n+1}+\frac{1}{2 n+2}\right)-\left(\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}\right) \\
& =\frac{1}{2 n+1}+\frac{1}{2 n+2}-\frac{1}{n+1} \\
& =\frac{n+1}{(2 n+1)(2 n+2)(n+1)}<0
\end{aligned}
$$

because $n>0$ for all $n \in \mathbf{N}$. So $x_{n+1}<x_{n}$ for all $n \in \mathbf{N}$, justifying my claim.
Also for every $n \in \mathbf{N}$, there are n terms in the sum defining x_{n}, the largest of which is $1 /(n+1)$. Therefore, I have the upper bound

$$
x_{n}=\frac{1}{n+1}+\ldots+\frac{1}{2 n} \leq n \cdot \frac{1}{n+1}<1
$$

So $\langle x\rangle$ is a bounded monotone sequence and must converge by Theorem 13.16.

14.8:

(a) This is true.

Proof. I will prove the contrapositive: if $\langle x\rangle$ has limit L, then $\langle x\rangle$ is bounded. To do this, I take $\epsilon=1$. Since $\langle x\rangle$ converges to L, there is an $N \in \mathbf{N}$ such that $\left|x_{n}-L\right|<1$ for all $n \geq N$. In particular, $\left|x_{n}\right|<|L|+1$ for all $n \geq N$. So if I set

$$
M:=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{N-1}\right|,|L|+1\right\}<\infty,
$$

it then follows that $\left|x_{n}\right| \leq C$ for every $n \in \mathbf{N}$. That is, $\langle x\rangle$ is bounded.
(b) This is false. For example, if $x_{n}=(-1)^{n} / n$, then $\langle x>$ is neither increasing or decreasing, but it converges to 0 .
14.14:

Proof. Let $\epsilon>0$ be given. Since $a_{n} \rightarrow L$, there exists $N_{1} \in \mathbf{N}$ such that $n \geq N_{1}$ implies

$$
\left|a_{n}-L\right|<\frac{|M| \epsilon}{4}
$$

Because $b_{n} \rightarrow M$ there exists $N_{2} \in \mathbf{N}$ such that $n \geq N_{2}$ implies

$$
\left|b_{n}-M\right|<|M| / 2
$$

which is the same as saying, $M / 2<b_{n}<3 M / 2$. Finally, I can also choose $N_{3} \in \mathbf{N}$ such that $n \geq N_{3}$ implies

$$
\left|b_{n}-M\right|<\frac{\epsilon M^{2}}{4|L|}
$$

Now I set $N=\max \left\{N_{1}, N_{2}, N_{3}\right\}$. Then if $n \geq N$, all of the above inequalities concerning a_{n} and b_{n} are true, and I can estimate

$$
\begin{aligned}
\left|\frac{a_{n}}{b_{n}}-\frac{L}{M}\right| & =\frac{\left|a_{n} M-L b_{n}\right|}{\left|b_{n} M\right|} \\
& =\frac{\left|a_{n} M-L M+L M-L b_{n}\right|}{\left|b_{n} M\right|} \\
& \leq \frac{\left|a_{n} M-L M\right|+\left|L M-L b_{n}\right|}{\left|b_{n} M\right|} \\
& =\frac{\left|a_{n}-L\right|}{\left|b_{n}\right|}+\frac{|L|}{\left|M b_{n}\right|}\left|b_{n}-M\right| \\
& \leq \frac{\left|a_{n}-L\right|}{|M| / 2}+\frac{|L|}{M^{2} / 2}\left|b_{n}-M\right| \\
& <\frac{|M| \epsilon}{4} \frac{2}{|M|}+\frac{2|L|}{M^{2}} \frac{\epsilon M^{2}}{4|L|}=\epsilon .
\end{aligned}
$$

So to summarize, when $n \geq N$, I have shown that $\left|a_{n} / b_{n}-L / M\right|<\epsilon$. It follows that $\lim a_{n} / b_{n}=L / M$.
14.24a: Since $\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} x_{n}$ (see part (e) of the non-book homework problem), I have

$$
L=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} x_{n}^{2}-4 x_{n}+6
$$

Then I can apply Theorem 14.5 to the right side of this equation, obtaining

$$
L=L^{2}-4 L+6
$$

or $L^{2}-5 L+6$. It follows that $L=0$ or 3 .
...and one more: here is a (really good) algorithm for computing square roots of positive numbers. Let $a>1$ be a real number, and define a sequence $<x>$ inductively by setting

- $x_{1}=a$;
- for all $n \geq 1$, set $x_{n+1}=\frac{1}{2}\left(x_{n}+a / x_{n}\right)$.

Complete each of the following steps to show that $\lim _{n \rightarrow \infty} x_{n}=\sqrt{a}$.
(a) Prove that $x_{n} \geq 0$ for all n (Hint: induction).

Proof. Initial Step. When $n=1, x_{n}=a>0$ by hypothesis.
Induction Step. Suppose that $x_{k}>0$. Then

$$
x_{k+1}=\frac{1}{2}\left(x_{k}+\frac{a}{x_{k}}\right)>0
$$

since all quanities on the right side are positive.
I conclude that $x_{n}>0$ for all $n \in \mathbf{N}$.
(b) Prove $x_{n}^{2}>a$ for all $n \in \mathbf{N}$ (Hint: induction again, look at the difference between the quantities).
Proof. Initial Step. $x_{1}^{2}=a^{2}>a$ since $a>1$.
Induction Step. Suppose that $x_{k}^{2}>a$. Then

$$
x_{k+1}^{2}-a=\frac{1}{4}\left(x_{k}+\frac{a}{x_{k}}\right)^{2}-a=\frac{x_{k}^{4}-2 a x_{k}^{2}+a^{2}}{4 x_{k}^{2}}=\frac{\left(x_{k}^{2}-a\right)^{2}}{4 x_{k}^{2}} \geq 0
$$

since $x_{k}^{2}>a$.
I conclude that $x_{n}^{2}>a$ for all $n \in \mathbf{N}$.
(c) Prove that $\langle x\rangle$ is decreasing.

Proof.

$$
x_{n+1}-x_{n}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)-x_{n}=\frac{x_{n}^{2}-a}{2 x_{n}}>0
$$

because $x_{n}>0$ and $x_{n}^{2}>a$. Therefore $x_{n+1}<x_{n}$ for all n, and the sequence is decreasing.
(d) Now we know that $\langle x\rangle$ converges. Why? Call the limit L.

Answer. I have shown that $\langle x\rangle$ is decreasing and bounded below by 0 , so by Theorem 13.16, $\langle x\rangle$ converges.
(e) Show that $\lim _{n \rightarrow \infty} x_{n+1}$ is also L. That is, if we set $y_{n}=x_{n+1}$, then show that $<y>$ converges to L.
Proof. Let $\epsilon>0$ be given. Since $\lim x_{n}=L$, there exists $N \in \mathbf{N}$ such that $n \geq N$ implies $\left|x_{n}-L\right|<\epsilon$. But if $n \geq N$, so is $n+1$. Hence $\left|x_{n+1}-L\right|<\epsilon$, too. It follows that $\lim x_{n+1}=L$.
(f) Take limits of both sides of the formula for x_{n+1} to show that $L^{2}=a$.

Proof. Since x_{n} and x_{n+1} both converge to L, I can use Theorem 14.5 to obtain

$$
\begin{aligned}
L & =\lim x_{n+1}=\lim \frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right) \\
& =\frac{1}{2}\left(\lim x_{n}+\lim \frac{a}{x_{n}}\right)=\frac{1}{2}\left(L+\frac{a}{\lim x_{n}}\right) \\
& =\frac{1}{2}\left(L+\frac{a}{L}\right)
\end{aligned}
$$

(note in the fourth equality that $L^{2} \geq a$ because $x_{n}^{2}>a$; in particular $L \neq 0$). Rearranging this equation, I see that

$$
L^{2}=a
$$

That is, $\lim x_{n}=L=\sqrt{a}$.

Use this algorithm (and a calculator) to compute $\sqrt{2}$ accurately to five decimal places. For your answer, it's enough to list all the x_{n} you compute along the way.
Answer.

- $x_{1}=2$.
- $x_{2}=\frac{1}{2}(2+2 / 2)=\frac{3}{2}=1.5$.
- $x_{3}=\frac{1}{2}(3 / 2+4 / 3)=\frac{17}{12}=1.416666 \ldots$.
- $x_{4}=\frac{1}{2}(17 / 12+24 / 17)=\frac{577}{408}=1.4142156 \ldots$.
- $x_{5}=\frac{1}{2}(577 / 408+816 / 577)=1.414235 \ldots$.

So anyhow, it took me only 3 steps to reach an approximation of 1.4142 for $\sqrt{2}$.

