
Solutions to Homework 11

Solutions

13-30. Proof. I claim that the sequence < x > is increasing. To prove this, I check the
difference
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because n > 0 for all n ∈ N. So xn+1 < xn for all n ∈ N, justifying my claim.
Also for every n ∈ N, there are n terms in the sum defining xn, the largest of which is

1/(n + 1). Therefore, I have the upper bound
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So < x > is a bounded monotone sequence and must converge by Theorem 13.16. �

14.8:

(a) This is true.

Proof. I will prove the contrapositive: if < x > has limit L, then < x > is bounded.
To do this, I take ε = 1. Since < x > converges to L, there is an N ∈ N such that
|xn − L| < 1 for all n ≥ N . In particular, |xn| < |L|+ 1 for all n ≥ N . So if I set

M := max{|x1|, . . . , |xN−1|, |L|+ 1} < ∞,

it then follows that |xn| ≤ C for every n ∈ N. That is, < x > is bounded. �

(b) This is false. For example, if xn = (−1)n/n, then < x > is neither increasing or
decreasing, but it converges to 0.

14.14:
Proof. Let ε > 0 be given. Since an → L, there exists N1 ∈ N such that n ≥ N1 implies

|an − L| < |M |ε
4



Because bn → M there exists N2 ∈ N such that n ≥ N2 implies

|bn −M | < |M |/2,

which is the same as saying, M/2 < bn < 3M/2. Finally, I can also choose N3 ∈ N such
that n ≥ N3 implies

|bn −M | < εM2

4|L|
Now I set N = max{N1, N2, N3}. Then if n ≥ N , all of the above inequalities concerning an
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So to summarize, when n ≥ N , I have shown that |an/bn − L/M | < ε. It follows that
lim an/bn = L/M . �

14.24a: Since limn→∞ xn+1 = limn→∞ xn (see part (e) of the non-book homework problem),
I have

L = lim
n→∞

xn = lim
n→∞

xn+1 = lim
n→∞

x2
n − 4xn + 6.

Then I can apply Theorem 14.5 to the right side of this equation, obtaining

L = L2 − 4L + 6,

or L2 − 5L + 6. It follows that L = 0 or 3.

...and one more: here is a (really good) algorithm for computing square roots of positive
numbers. Let a > 1 be a real number, and define a sequence < x > inductively by setting

• x1 = a;

• for all n ≥ 1, set xn+1 = 1
2
(xn + a/xn).

Complete each of the following steps to show that limn→∞ xn =
√

a.



(a) Prove that xn ≥ 0 for all n (Hint: induction).

Proof. Initial Step. When n = 1, xn = a > 0 by hypothesis.

Induction Step. Suppose that xk > 0. Then
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since all quanities on the right side are positive.

I conclude that xn > 0 for all n ∈ N. �

(b) Prove x2
n > a for all n ∈ N (Hint: induction again, look at the difference between the

quantities).

Proof. Initial Step. x2
1 = a2 > a since a > 1.

Induction Step. Suppose that x2
k > a. Then
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since x2
k > a.

I conclude that x2
n > a for all n ∈ N. �

(c) Prove that < x > is decreasing.

Proof.

xn+1 − xn =
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− xn =
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because xn > 0 and x2
n > a. Therefore xn+1 < xn for all n, and the sequence is

decreasing. �

(d) Now we know that < x > converges. Why? Call the limit L.

Answer. I have shown that < x > is decreasing and bounded below by 0, so by
Theorem 13.16, < x > converges.

(e) Show that limn→∞ xn+1 is also L. That is, if we set yn = xn+1, then show that < y >
converges to L.

Proof. Let ε > 0 be given. Since lim xn = L, there exists N ∈ N such that n ≥ N
implies |xn − L| < ε. But if n ≥ N , so is n + 1. Hence |xn+1 − L| < ε, too. It follows
that lim xn+1 = L. �



(f) Take limits of both sides of the formula for xn+1 to show that L2 = a.

Proof. Since xn and xn+1 both converge to L, I can use Theorem 14.5 to obtain

L = lim xn+1 = lim
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(note in the fourth equality that L2 ≥ a because x2

n > a; in particular L 6= 0).
Rearranging this equation, I see that

L2 = a.

That is, lim xn = L =
√

a. �

Use this algorithm (and a calculator) to compute
√

2 accurately to five decimal places. For
your answer, it’s enough to list all the xn you compute along the way.
Answer.

• x1 = 2.

• x2 = 1
2
(2 + 2/2) = 3

2
= 1.5.

• x3 = 1
2
(3/2 + 4/3) = 17

12
= 1.416666 . . ..

• x4 = 1
2
(17/12 + 24/17) = 577

408
= 1.4142156 . . ..

• x5 = 1
2
(577/408 + 816/577) = 1.414235 . . ..

So anyhow, it took me only 3 steps to reach an approximation of 1.4142 for
√

2.


