Homework 9

Solutions to graded problems

8-10. Suppose first that m and n are relatively prime. I will prove by contradiction that

$$
\frac{a n+b m}{m n}
$$

is in lowest terms. Suppose in order to obtain that contradiction that $p>1$ is a common factor of $m n$ and of $a n+b m$. I can assume without loss of generality that p is prime (because p is at least divisible by a prime number). Thus $p \mid m n$ implies that $p \mid m$ or $p \mid n$-say for the sake of argument that $p \mid m$. Then in particular, p does not divide n, because m and n are relatively prime.

Now turning to the numerator, I see that $p \mid b m$ because $p \mid m$. And since $a n=1(a n+$ $b m)+(-1) b m$ is an integer combination of m and n, I obtain that $p \mid a n$, too. So the fact that p is prime implies that $p \mid a$ or $p \mid n$. But I already know from the previous paragraph that p does not divide n. Hence $p \mid a$.

In summary $p \mid m$ and $p \mid a$. But this contradicts the (given) fact that a / m is in lowest terms. Hence no such p exists, and I conclude that $(a n+b m) / m n$ is in lowest terms.

To go in the other direction (" $(a n+b m) / m n$ in lowest terms implies that m and n are relatively prime") I prove the contrapositive: I suppose that m and n are not relatively prime and try to prove that $(a n+b m) / m n$ is not in lowest terms. This is not so hard. If $p>1$ divides both n and m, then it also divides all three products $m n$, $a n$ and $b m$. Hence $p \mid(a n+b m)$, too, and I see that p is a common factor of both numerator and denominator in $(a n+b m) / m n$. That is, the fraction is not in lowest terms.

8-12. If $a / b<c / d$, then $a d<b c$ because b and d are positive. To prove that $a / b<\frac{a+c}{b+d}$, I must show that $a(b+d)<b(a+c)$. So I check the difference between the two sides:

$$
a(b+d)-b(a+c)=a b+a d-b a-b c=a d-b c>0
$$

because $a d>b c$. Hence $a(b+d)>b(a+c)$ as desired.
The proof that $\frac{a+c}{b+d}<c / d$ is similar.

Extra problem 1. Note that any pair $(a, b) \in \mathbf{Z} \times \mathbf{Z}$ is related to $(0,0): a \cdot 0=b \cdot 0$. Hence transitivity fails. For instance, $(1,2) \sim(0,0)$ and $(0,0) \sim(2,3)$, but $(1,2) \nsim(2,3)$.

Extra problem 2. There are lots of right answers here.
(a) For instance $(1,2)+(-1,-2)=(0,0) \notin \mathbf{Z} \times(\mathbf{Z}-\{0\})$.
(b) For instance $(1,2) \sim(2,4)$ and $(2,3) \sim(2,3)$ but

$$
(1,2)+(2,3)=(3,5) \nsim(4,7)=(2,4)+(2,3)
$$

Extra problem 3. On the one hand

$$
(a, b) \cdot((c, d)+(e, f))=(a, b) \cdot(c f+e d, d f)=(a c f+a e d, b d f)
$$

On the other hand

$$
(a, b) \cdot(c, d)+(a, b) \cdot(e, f)=(a c, b d)+(a e, b f)=\left(a c b f+b d a e, b^{2} d f\right)
$$

And finally,

$$
(a c f+a e d)\left(b^{2} d f\right)=a b^{2} c d f^{2}+a b^{2} d^{2} e f=b d f(a c b f+b d a e) .
$$

So

$$
(a, b) \cdot((c, d)+(e, f)) \sim(a, b) \cdot(c, d)+(a, b) \cdot(e, f) .
$$

Extra problem 4.

(a) Nothing to do.
(b) Nothing to do.
(c) Let

$$
f_{2}(m, n)=\left\{\begin{array}{rll}
(m, 2 n) & \text { if } & n>0 \\
(m,-2 n+1) & \text { if } & n<0
\end{array}\right.
$$

(d) Suppose that $f_{3}(m, n)=f_{3}\left(m^{\prime}, n^{\prime}\right)$. Then

$$
2^{m} 3^{n}=2^{m^{\prime}} 3^{n^{\prime}}
$$

Hence both sides are prime factorizations of the same number. Since primes factorizations are unique, it follows that $m=m^{\prime}$ and $n=n^{\prime}$.
(e) Nothing to do.

