## Homework 5

From the book: 4.44, 4.47

## My problems:

1. Let $a, b, c, d$ be real numbers such that $a<b$ and $c<d$. Show that the closed intervals $[a, b]$ and $[c, d] \subset \mathbf{R}$ have the same cardinality.
2. Let $a, b \in \mathbf{R}$ be positive numbers. Use the Schroeder-Bernstein Theorem to show that the open interval $(0, a)$ has the same cardinality as the closed interval $[0, b] \subset \mathbf{R}$.
3. Prove that if $n$ and $m$ are natural numbers and $f:[n] \rightarrow[m]$ is surjective, then $n \geq m$. Suggestion: use induction on $n$. In the inductive step, there'll be two cases to considergiven $f:[k+1] \rightarrow[n]$, you might have $f(k+1)=n$ or you might have $f(k+1)<n$.

Extra credit: 4.48 ( 6 points for the formula for the bijection, 6 for a correct proof that the function is bijective)
Remark: In problem 4.47 and in my problem 1, you just have to give correct formulas for the bijections and their inverses - you don't have to prove that they're correct. Similarly, in my problem 2, you'll need to define two injections. You just have to give formulas that work - you don't actually have to prove they work.

## Solutions

4.44. First I show that $h$ is surjective. Let $k \in[m+n]$ be given. If $k \leq m$, then $k=f(x)$ for some $x \in A$, because $f: A \rightarrow[m]$ is surjective. Therefore, $k=h(x)$.

If $m<k \leq n$, then $0<k-m \leq n$. So $k-m=g(x)$ for some $x \in B$, because $g: B \rightarrow[n]$ is surjective. Therefore, $h(x)=g(x)+m=k-m+m=k$. Either way, $k=h(x)$ for some $x \in A \cup B$. So $h$ is surjective.

Now I show that $h$ is injective. Supposing that $h\left(x_{1}\right)=h\left(x_{2}\right)=k$ for some $x_{1}, x_{2} \in A \cup B$, I must prove that $x_{1}=x_{2}$. I consider three cases
(i) $x_{1}, x_{2} \in A$. In this case $h\left(x_{1}\right)=f\left(x_{1}\right)$ and $h\left(x_{2}\right)=f\left(x_{2}\right)$. So $f\left(x_{1}\right)=f\left(x_{2}\right)$. Since $f$ is injective, I conclude that $x_{1}=x_{2}$.
(ii) $x_{1}, x_{2} \in B$. In this case $h\left(x_{1}\right)=g\left(x_{1}\right)+m$ and $h\left(x_{2}\right)=g\left(x_{2}\right)+m$. So $g\left(x_{1}\right)+m=$ $g\left(x_{2}\right)+m$, which implies that $g\left(x_{1}\right)=g\left(x_{2}\right)$. Since $g$ is injective, I conclude that $x_{1}=x_{2}$.
(iii) $x_{1} \in A, x_{2} \in B$ (the case $x_{1} \in B, x_{2} \in A$ is similar). In this case $h\left(x_{1}\right)=f\left(x_{1}\right) \leq m$ and $h\left(x_{2}\right)=g\left(x_{2}\right)+m \geq m+1$. In particular $h\left(x_{1}\right) \neq h\left(x_{2}\right)$, which contradicts our initial supposition. That is, this case never occurs.

In all three cases, we see that $h\left(x_{1}\right)=h\left(x_{2}\right)$ implies that $x_{1}=x_{2}$. Hence $h$ is injective.
Since $h$ is surjective and injective, I conclude that $h$ is bijective.
4.47. Let $E \subset \mathbf{N}$ be the set of all even numbers and $O \subset \mathbf{N}$ the set of all odd numbers. Then $f(x)=2 x$ defines a bijection $f: \mathbf{N} \rightarrow E$ (with inverse function $f^{-1}(y)=y / 2$ ) and $g(x)=2 x-1$ defines a bijection $g: \mathbf{N} \rightarrow O$ (with inverse function $g^{-1}(y)=(y+1) / 2$. Therefore both sets $E$ and $O$ have the same cardinality-i.e. $E$ and $O$ are both countable sets.

My problem 1: Let $a, b, c, d$ be real numbers such that $a<b$ and $c<d$. Show that the closed intervals $[a, b]$ and $[c, d] \subset \mathbf{R}$ have the same cardinality.

Solution: The sets $[a, b]$ and $[c, d]$ have the same cardinality if and only if there is a bijection $f:[a, b] \rightarrow[c, d]$. The easiest way to find such a bijection is to first draw its graph. Then it becomes clear that a natural candidate for the graph is a straight line that joins the point $(a, c)$ to the point $(b, d)$. The function that produces this graph has the formula $f(x)=\frac{b-a}{d-c}(x-a)+c$ (if this looks complicated, it's only because of the fact that we don't have specific values for $a, b, c, d$; as far as the variable x is concerned, f just has the form ' $\mathrm{mx}+\mathrm{h}$ ', where $m$ and $h$ depend on $a, b, c, d$. Defined by this formula, $f:[a, b] \rightarrow[c, d]$ is a bijection with inverse function

$$
f^{-1}(y)=\frac{d-c}{b-a}(y-c)+a .
$$

So $[a, b]$ and $[c, d]$ have the same cardinality.

My problem 2.: Let $a, b \in \mathbf{R}$ be positive numbers. Use the Schroeder-Bernstein Theorem to show that the open interval $(0, a) \subset \mathbf{R}$ has the same cardinality as the closed interval $[0, b] \subset \mathbf{R}$.

Solution: In order to use Schroeder-Bernstein I need an injection $f:(0, a) \rightarrow[0, b]$ and an injection $g:[0, b] \rightarrow(0, a)$. And again, it's easiest to approach this problem by first imagining what the graphs of $f$ and $g$ might look like. However, this time I'll skip the discussion and cut straight to the formulas for $f$ and $g$.

The linear function $f(x)=\frac{b}{a} x$ satisfies $f(0)=0$ and $f(a)=b$. So $f$ maps the interval $(0, a)$ bijectively onto the interval $(0, b)$. And since $(0, b) \subset[0, b]$, it follows that $f:(0, a) \rightarrow$ $[0, b]$ is injective.

To get an injective function $g:[0, b] \rightarrow(0, a)$ going the other way, I'll define a linear function that sends $[0, b]$ onto some interval inside $(0, a)$-say $[a / 3,2 a / 3]$ for instance. So I need a linear function $g(y)=m y+k$ that sends 0 to $a / 3$ and $b$ to $2 a / 3$. The function

$$
g(y)=\frac{a}{3 b} y+\frac{a}{3}
$$

does exactly this.

In summary, I've shown that there is an injection $f:(0, a) \rightarrow[0, b]$ and an injection $g:[0, b] \rightarrow(0, a)$. By the Schroeder-Bernstein Theorem, I conclude that there exists a bijection $h:(0, a) \rightarrow[0, b]$. Hence $(0, a)$ and $[0, b]$ have the same cardinality.

My problem 3. Prove that if $n$ and $m$ are natural numbers and $f:[n] \rightarrow[m]$ is surjective, then $n \geq m$.

Solution: I work by induction on $n$.
Initial step: $(\mathrm{n}=1)$. If $f:[1] \rightarrow[m]$ is surjective, then there exists $x \in[1]$ such that $f(x)=1$. As there's only one element in [1], it must be that $x=1$. So $f(1)=1$. The same reasoning shows that $f(1)=m$. But $f(1)$ can't be two different things. Hence $m=1$.
Induction step: Assume the assertion is true when $n=k$. That is, if $f:[k] \rightarrow[m]$ is surjective, then $k \geq m$. To complete the induction step I suppose that $f:[k+1] \rightarrow[m]$ is surjective and try to show that $k+1 \geq m$. I consider two cases.
(i) $f(k+1)=m$. From this it follows that $f:[k] \rightarrow[m-1]$ is surjective (why?). Hence $k \geq m-1$. That is, $k+1 \geq m$.
(ii) $f(k+1)<m$. Then by surjectivity there exists $x \in[k+1]$ such that $f(x)=m$. Evidently $x \neq k+1$, so $x \in[k]$. Using $x$, I define a function $g:[k] \rightarrow[m]$ as follows

$$
g(t)=\left\{\begin{array}{rll}
f(t) & \text { if } & t \neq x \\
f(k+1) & \text { if } & t=x
\end{array}\right.
$$

It follows that the image of $g$ is the same as that of $f$ except that $f(x)=m$. In other words the image of $g$ is exactly $[m-1]$, so $g:[k] \rightarrow[m-1]$ is surjective. Once again our induction hypothesis leads us to conclude that $k-1 \geq m$, or equivalently, $k+1 \geq m$.

This completes the inductive step and the proof.

