
Homework 6

For practice: 6.2, 6.3, 6.5, 6.6, 6.8, 6.12

To turn in: 6.4, 6.11 (1st part only), 6.13, 6.17, 6.24 (1st part only).

From another book: Express the fraction 1739/4042 in lowest terms. Express gcd(1739, 4042)
as an integer combination of 1739 and 4042. Don’t use a calculator except to check that
your integer combination is correct!

Solutions to graded problems

6.4. Clearly n divides both an and bn. Hence n ≤ gcd(an, bn). On the other hand since
gcd(a, b) = 1, there exist s, t ∈ Z such that

sa + tb = 1.

Multiplying through by n gives
s(an) + t(bn) = n.

That is, n is an integer combination of an and bn. Since gcd(an, bn) divides both an and
bn, it follows that gcd(an, bn) divides n. In particular gcd(an, bn) ≤ n.

In summary I have shown that n ≤ gcd(an, bn) and n ≥ gcd(an, bn). It follows that
n = gcd(an, bn). �

6.11. Suppose that the person has k of each kind of coin and that the total value of all coins
is n dollars (i.e. 100n cents). Then

100n = k(1 + 5 + 10 + 25 + 50) = 91k.

But 100 and 91 are relatively prime (11 · 91− 100 · 100 = 1), so it must be (Proposition 6.6)
that 91 divides n. In particular, the smallest n can be is 91. I conclude that minimum value
of the coins is $91.

6.13. As in problem 6.11, we have

100n = k(25 + 2 · 5 + 4 · 10) = 75k,

where n is the number of dollars in the meter. This simplifies to

4n = 3k,

and since 4 and 3 are relatively prime, 4 must divide k. And if 4 does divide k, we can
write k = 4m for some m ∈ N and conclude that n = 3m is an integer number of dollars.



Therefore the total amount of money is an integer number of dollars if and only if k is a
multiple of 4.

6.17. Recall that if a number k divides both m and n, then it divides any integer combination
of m and n. We apply this fact as follows. Note that

2a = 1 · (a + b) + 1 · (a− b) and a− b = 0 · (a + b) + 1 · (a− b).

Hence gcd(a+b, a−b) divides both 2a and a−b. Thus gcd(a+b, a−b) divides gcd(2a, a−b).
In the other direction, we have

a + b = 1 · 2a + (−1) · (a− b)a− b = 0 · 2a + 1 · (a− b).

So the same reasoning shows that gcd(2a, a− b) divides gcd(a + b, a− b). The only way this
can happen is if gcd(2a, a− b) = gcd(a + b, a− b).

Showing that gcd(a + b, a − b) = gcd(a + b, 2b) is completely analogous. The relevant
integer combinations are

a + b = 1 · (a + b) + 0 · (a− b) and 2b = 1 · (a + b) + (−1) · (a− b);

and
a + b = 1 · (a + b) + 0 · 2b and a− b = 1 · (a + b) + (−1) · 2b.

6.18. I claim that if gcd(a, b) = 1, then gcd(a2, b2) = 1. (so, yes, gcd(a, b) determines
gcd(a2, b2)).
Proof. Suppose that there is some number p > 1 dividing both a2, b2. We can assume
without loss of generality that p is prime. But then p|a2 implies that p|a (Proposition 6.7).
Similarly p|b. It follows that p| gcd(a, b), which is impossible as the latter number is one.
This shows that gcd(a2, b2) = 1. �

Now gcd(a, b) = 1 does not determine gcd(a, 2b). For instance gcd(3, 1) = gcd(3, 2) = 1,
but 1 = gcd(2, 1) 6= gcd(2, 2) = 2.

6.24. Proof by induction.
Initial step. When n = 1, we have 4n − 1 = 3 which is clearly divisible by 3.
Induction step. Suppose that 3|(4k − 1)—i.e. 4k − 1 = 3m for some m ∈ N. I must show
that 3|(4k+1 − 1). Now

4k+1 − 1 = 4 · 4k − 1 = 4 · (3m + 1)− 1 = 12m + 3 = 3(4m + 1)

by the induction hypothesis. This shows that 3|(4k+1− 1) and completes the induction step.
By induction, I conclude that 3|(4n − 1) for all n ∈ N. �



6.28. Since a|n, we have n = ak for some k ∈ N. Hence b divides the product ak. Now a
and b are relatively prime, so Proposition 6.6 tells us that b must divide k. In other words
k = b`. Therefore we have

n = ak = ab`,

which means that ab|n. �

6.35. Let x = 1 + (n + 1)! = 1 + (1 · 2 · 3 · . . . · (n + 1)). Then

x + 1 = 2 + (n + 1)! = 2(1 + 1 · 3 · 4 · . . . · (n + 1)),

so 2|x + 1. Similarly if j ≤ n, then

x + j = (j + 1) + (n + 1)! = (j + 1)(1 + 1 · 2 · . . . · j · j + 2 · j + 3 · . . . · (n + 1),

so j + 1 divides x + j. It follows that

x + 1, x + 2, . . . , x + n + 1

is a sequence of n consecutive natural numbers that are not prime.

Problem from another book. The point is to compute gcd(1739, 4042). I apply the
Euclidean algorithm to do this.

4042 = 2 · 1739 + 564

1739 = 3 · 564 + 47

564 = 12 · 47 + 0

So the end result is that gcd(4042, 1739) = 47. It follows that the fraction 1739/4042 becomes
37/86 when expressed in lowest terms! To check this, I recycle the above work, and end by
expressing 47 as a linear combination of 1739 and 4042:

564 = 1 · 4042− 2 · 1739

47 = 1 · 1739− 3 · 564 = 1 · 1769− 3(1 · 4042− 2 · 1739)

= −3 · 4042 + 7 · 1739,

which a calculator will easily verify to be true.


