Homework 6

For practice: 6.2, 6.3, 6.5, 6.6, 6.8, 6.12
To turn in: 6.4, 6.11 (1st part only), 6.13, 6.17, 6.24 (1st part only).
From another book: Express the fraction 1739/4042 in lowest terms. Express gcd(1739, 4042) as an integer combination of 1739 and 4042. Don't use a calculator except to check that your integer combination is correct!

Solutions to graded problems

6.4. Clearly n divides both $a n$ and $b n$. Hence $n \leq \operatorname{gcd}(a n, b n)$. On the other hand since $\operatorname{gcd}(a, b)=1$, there exist $s, t \in \mathbf{Z}$ such that

$$
s a+t b=1 .
$$

Multiplying through by n gives

$$
s(a n)+t(b n)=n .
$$

That is, n is an integer combination of $a n$ and $b n$. Since $\operatorname{gcd}(a n, b n)$ divides both $a n$ and $b n$, it follows that $\operatorname{gcd}(a n, b n)$ divides n. In particular $\operatorname{gcd}(a n, b n) \leq n$.

In summary I have shown that $n \leq \operatorname{gcd}(a n, b n)$ and $n \geq \operatorname{gcd}(a n, b n)$. It follows that $n=\operatorname{gcd}(a n, b n)$.
6.11. Suppose that the person has k of each kind of coin and that the total value of all coins is n dollars (i.e. $100 n$ cents). Then

$$
100 n=k(1+5+10+25+50)=91 k .
$$

But 100 and 91 are relatively prime ($11 \cdot 91-100 \cdot 100=1$), so it must be (Proposition 6.6) that 91 divides n. In particular, the smallest n can be is 91 . I conclude that minimum value of the coins is $\$ 91$.
6.13. As in problem 6.11, we have

$$
100 n=k(25+2 \cdot 5+4 \cdot 10)=75 k
$$

where n is the number of dollars in the meter. This simplifies to

$$
4 n=3 k
$$

and since 4 and 3 are relatively prime, 4 must divide k. And if 4 does divide k, we can write $k=4 m$ for some $m \in \mathbf{N}$ and conclude that $n=3 m$ is an integer number of dollars.

Therefore the total amount of money is an integer number of dollars if and only if k is a multiple of 4 .
6.17. Recall that if a number k divides both m and n, then it divides any integer combination of m and n. We apply this fact as follows. Note that

$$
2 a=1 \cdot(a+b)+1 \cdot(a-b) \text { and } a-b=0 \cdot(a+b)+1 \cdot(a-b) .
$$

Hence $g c d(a+b, a-b)$ divides both $2 a$ and $a-b$. Thus $g c d(a+b, a-b)$ divides $g c d(2 a, a-b)$. In the other direction, we have

$$
a+b=1 \cdot 2 a+(-1) \cdot(a-b) a-b=0 \cdot 2 a+1 \cdot(a-b) .
$$

So the same reasoning shows that $\operatorname{gcd}(2 a, a-b)$ divides $\operatorname{gcd}(a+b, a-b)$. The only way this can happen is if $\operatorname{gcd}(2 a, a-b)=\operatorname{gcd}(a+b, a-b)$.

Showing that $\operatorname{gcd}(a+b, a-b)=\operatorname{gcd}(a+b, 2 b)$ is completely analogous. The relevant integer combinations are

$$
a+b=1 \cdot(a+b)+0 \cdot(a-b) \text { and } 2 b=1 \cdot(a+b)+(-1) \cdot(a-b)
$$

and

$$
a+b=1 \cdot(a+b)+0 \cdot 2 b \text { and } a-b=1 \cdot(a+b)+(-1) \cdot 2 b
$$

6.18. I claim that if $\operatorname{gcd}(a, b)=1$, then $\operatorname{gcd}\left(a^{2}, b^{2}\right)=1$. (so, yes, $\operatorname{gcd}(a, b)$ determines $\left.\operatorname{gcd}\left(a^{2}, b^{2}\right)\right)$.
Proof. Suppose that there is some number $p>1$ dividing both a^{2}, b^{2}. We can assume without loss of generality that p is prime. But then $p \mid a^{2}$ implies that $p \mid a$ (Proposition 6.7). Similarly $p \mid b$. It follows that $p \mid \operatorname{gcd}(a, b)$, which is impossible as the latter number is one. This shows that $\operatorname{gcd}\left(a^{2}, b^{2}\right)=1$.

Now $\operatorname{gcd}(a, b)=1$ does not determine $\operatorname{gcd}(a, 2 b)$. For instance $\operatorname{gcd}(3,1)=\operatorname{gcd}(3,2)=1$, but $1=\operatorname{gcd}(2,1) \neq \operatorname{gcd}(2,2)=2$.

6.24. Proof by induction.

Initial step. When $n=1$, we have $4^{n}-1=3$ which is clearly divisible by 3 .
Induction step. Suppose that $3 \mid\left(4^{k}-1\right)$-i.e. $4^{k}-1=3 m$ for some $m \in \mathbf{N}$. I must show that $3 \mid\left(4^{k+1}-1\right)$. Now

$$
4^{k+1}-1=4 \cdot 4^{k}-1=4 \cdot(3 m+1)-1=12 m+3=3(4 m+1)
$$

by the induction hypothesis. This shows that $3 \mid\left(4^{k+1}-1\right)$ and completes the induction step. By induction, I conclude that $3 \mid\left(4^{n}-1\right)$ for all $n \in \mathbf{N}$.
6.28. Since $a \mid n$, we have $n=a k$ for some $k \in \mathbf{N}$. Hence b divides the product $a k$. Now a and b are relatively prime, so Proposition 6.6 tells us that b must divide k. In other words $k=b \ell$. Therefore we have

$$
n=a k=a b \ell,
$$

which means that $a b \mid n$.
6.35. Let $x=1+(n+1)!=1+(1 \cdot 2 \cdot 3 \cdot \ldots \cdot(n+1))$. Then

$$
x+1=2+(n+1)!=2(1+1 \cdot 3 \cdot 4 \cdot \ldots \cdot(n+1)),
$$

so $2 \mid x+1$. Similarly if $j \leq n$, then

$$
x+j=(j+1)+(n+1)!=(j+1)(1+1 \cdot 2 \cdot \ldots \cdot j \cdot j+2 \cdot j+3 \cdot \ldots \cdot(n+1),
$$

so $j+1$ divides $x+j$. It follows that

$$
x+1, x+2, \ldots, x+n+1
$$

is a sequence of n consecutive natural numbers that are not prime.

Problem from another book. The point is to compute $\operatorname{gcd}(1739,4042)$. I apply the Euclidean algorithm to do this.

$$
\begin{aligned}
4042 & =2 \cdot 1739+564 \\
1739 & =3 \cdot 564+47 \\
564 & =12 \cdot 47+0
\end{aligned}
$$

So the end result is that $\operatorname{gcd}(4042,1739)=47$. It follows that the fraction 1739/4042 becomes 37/86 when expressed in lowest terms! To check this, I recycle the above work, and end by expressing 47 as a linear combination of 1739 and 4042:

$$
\begin{aligned}
564 & =1 \cdot 4042-2 \cdot 1739 \\
47 & =1 \cdot 1739-3 \cdot 564=1 \cdot 1769-3(1 \cdot 4042-2 \cdot 1739) \\
& =-3 \cdot 4042+7 \cdot 1739
\end{aligned}
$$

which a calculator will easily verify to be true.

