Math 225: Calculus III

Exam I September 27, 1990

Name:
Score:

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 17 multiple choice questions worth 6 points each for a total of 102 points.

The distance between the points $(1,-2,5)$ and $(-1,6,3)$ is best approximated by 8.494 .456 .232 .57 10.14

Which two vectors are perpendicular? $3 \subset-\supset-2$ and $-\subset+\supset-2-\subset+2 \supset+$ and $\subset-2 \supset+$ $\subset-\supset$ and $\supset-\subset$ and $\subset+\supset+\subset+\supset+2$ and $3 \subset+3 \supset-6$

Find the angle between the vectors $=\subset+\supset+$ and $\equiv(\sqrt{2}+3) \subset+\sqrt{2} \supset+(\sqrt{2}-3) . \pi / 3 \pi / 60 \pi / 2$ $3 \pi / 4$

Find the projection of the vector $=\subset+2 \supset$ on the vector $\equiv-\subset+\supset+\frac{1}{3}(-\subset+\supset+) \frac{1}{\sqrt{15}}(-\subset+\supset+)$ $\frac{1}{\sqrt{5}}(\subset+2 \supset)-\subset+\supset+\mathbf{0}$

Compute the triple product $\times(\underline{\times})$ of the vectors $=\subset+\supset, \equiv \supset+$, and $\doteqdot \subset+. \supset-\subset-\subset-\supset$ $\subset-\supset+$

Which of the following vectors is normal to the plane containing the points $P_{1}=(5,0,1), P_{2}=(1,1,0)$, and $P_{3}(-1,0,0) ? \subset-2 \supset-6 \subset-4 \supset+3-\subset-\supset+5 \subset-\supset+5 \subset+2 \supset-2$

Find the distance from the point $(0,1,0)$ to the line $x=1, \frac{y}{4}=\frac{(z-2)}{3} \cdot \frac{\sqrt{146}}{5} \frac{\sqrt{159}}{5} \frac{\sqrt{212}}{4} \quad \frac{\sqrt{116}}{3} \quad \frac{\sqrt{189}}{4}$
Find the distance from the point $(1,2,-3)$ to the plane $7 x+3 y+z=5 . \frac{5}{\sqrt{59}} \frac{10}{\sqrt{59}} \frac{3}{\sqrt{13}} \frac{25}{\sqrt{767}} \frac{5}{\sqrt{13}}$
Find the point where the plane $2 x-3 y-z=6$ and the line $(t)=(1+t) \subset+t \supset+(1-t)$ intersect. no such point $(1,-1,-1)(1,0,1)(2,1,0)(0,0,-6)$

Determine the symmetric equations of the line tangent to the curve $(t)=\cos (t) \subset+\sin (t) \supset+\sin (2 t)$ at the point $(1,0,0) . x=1, \quad y=\frac{z}{2} x-1=y=\frac{z}{2} \quad x$-axis $x=1, \quad y=0 y=0, \quad x-1=\frac{z}{2}$

Which of the following statements applies to the curve defined by $(t)=t^{2} \subset+t^{3} \supset+t^{5}$. piecewise smooth, but not smooth smooth continuous, but not piecewise smooth not continuous none of the above apply

The position of a particle at time $t \geq 0$ is given by $(t)=\left(t^{3}-t\right) \subset+t^{2} \supset+\left(t^{5}-t^{3}\right)$. Compute the speed of the particle at time $t=1.2 \sqrt{3} 2 \subset+2 \supset+2 \sqrt{25 t^{8}-30 t^{6}+18 t^{4}-2 t^{2}} 3 \subset+2 \supset \sqrt{11}$

The tangential component of acceleration of an object with position $(t)=e^{t} \subset+e^{-t} \supset+\sqrt{2} t$ is $a_{T}=e^{t}-e^{-t}$. Determine the normal component of acceleration, $a_{N} \cdot \sqrt{2} \sqrt{e^{2 t}+e^{-2 t}} e^{t}+e^{-t} e^{t} \subset+e^{-t} \supset$ $e^{t} \subset-e^{-t} \supset+\sqrt{2}$

Suppose $(0)=\subset+\supset+2,^{\prime}(0)=\supset-,(0)=-5 \subset-2 \supset+3$, and ${ }^{\prime}(0)=\subset+4 \supset$. Compute $(\bullet)^{\prime}(0) .0-5$ 5-4 1

Let $(t)=t \sin (t) \subset+t \cos (t) \supset+t e^{t}$. Find ${ }^{\prime}(0) . \supset+(\sin (t)+t \cos (t)) \subset+(\cos (t)-t \sin (t)) \supset+e^{t} \subset+$ $\cos (t)+t 2$

Determine a vector valued function (t) such that ${ }^{\prime}(t)=\subset+2 e^{-t} \supset+\frac{1}{1+t}$ and $(0)=\subset .(t)=(t+1) \subset$ $+2\left(1-e^{-t}\right) \supset+\ln (1+t)(t)=(1-t) \subset+\left(1-e^{-t}\right) \supset+\ln (1+t)(t)=t \subset+\left(2-e^{-t}\right) \supset-(1+\ln (1+t))$ $(t)=t \subset-2 e^{-t} \supset+\ln (1+t)(t)=\left(t^{2}+1\right) \subset+\left(1-e^{-2 t}\right) \supset-\ln (1+t)$

Which of the following is the length of the curve parameterized by $(t)=(1+t) \subset+\left(2-t^{2}\right) \supset+\left(3+t^{3}\right)$, $0 \leq t \leq 1$.
$\int_{0}^{\overline{1}} \sqrt{1+4 t^{2}+9 t^{4}} d t \frac{52}{15} \frac{7}{3} \sqrt{14} \int_{0}^{1} \sqrt{14+2 t-7 t^{2}+4 t^{4}+18 t^{3}+9 t^{6}} d t$

